跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃睿宇
研究生(外文):Huang, Ruei-Yu
論文名稱:多目標時變貝氏最佳化
論文名稱(外文):Multi-Objective Time-Varying Bayesian Optimization
指導教授:謝秉均
指導教授(外文):Hsieh, Ping-Chun
口試委員:高榮鴻黃昱智許裕彬
口試委員(外文):Gau, Rung-HungHuang, Yu-ChihHsu, Yu-Pin
口試日期:2022-10-04
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:數據科學與工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:英文
論文頁數:42
中文關鍵詞:高斯過程貝氏最佳化多目標時變貝氏最佳化
外文關鍵詞:Gaussian processBayesian optimizationMulti-objective time-varying Bayesian optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Regret Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Multi-Objective Time-Varying Bayesian Optimization . . . . . . . . . . . . . . . 8
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Posterior Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Regret Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1 One objective function changes . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 N objective functions change . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.1 Proof of (5.43) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Proof of (5.44) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Real-World Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Appendix A Analysis of Mutual Information . . . . . . . . . . . . . . . . . . . . . . 38
Appendix B Main Results to Specific Kernels (Corollary 3) . . . . . . . . . . . . . 42
[1] I. Bogunovic, J. Scarlett, and V. Cevher, “Time-varying gaussian process bandit optimiza-
tion,” in Artificial Intelligence and Statistics. PMLR, 2016, pp. 314–323.
[2] C. K. Williams and C. E. Rasmussen, “Gaussian processes for machine learning,” vol. 2,
no. 3, 2006.
[3] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-theoretic regret
bounds for gaussian process optimization in the bandit setting,” IEEE transactions on in-
formation theory, vol. 58, no. 5, pp. 3250–3265, 2012.
[4] E. Contal, V. Perchet, and N. Vayatis, “Gaussian process optimization with mutual infor-
mation,” in International Conference on Machine Learning. PMLR, 2014, pp. 253–261.
[5] A. Krause and C. Ong, “Contextual gaussian process bandit optimization,” Advances in
Neural Information Processing Systems, vol. 24, 2011.
[6] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani, “Predictive entropy search
for efficient global optimization of black-box functions,” Advances in Neural Information
Processing Systems, vol. 27, 2014.
[7] Z. Wang and S. Jegelka, “Max-value entropy search for efficient bayesian optimization,”
in International Conference on Machine Learning. PMLR, 2017, pp. 3627–3635.
[8] S. Belakaria, A. Deshwal, N. K. Jayakodi, and J. R. Doppa, “Uncertainty-aware search
framework for multi-objective bayesian optimization,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 34, no. 06, 2020, pp. 10 044–10 052.
[9] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast bayesian optimization of
machine learning hyperparameters on large datasets,” in Artificial intelligence and statis-
tics. PMLR, 2017, pp. 528–536.
[10] H. Imamura, N. Charoenphakdee, F. Futami, I. Sato, J. Honda, and M. Sugiyama, “Time-
varying gaussian process bandit optimization with non-constant evaluation time,” arXiv
preprint arXiv:2003.04691, 2020.
[11] A. Verma and M. K. Hanawal, “Stochastic network utility maximization with unknown
utilities: Multi-armed bandits approach,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 189–198.
[12] X. Fu and E. Modiano, “Learning-num: Network utility maximization with unknown util-
ity functions and queueing delay,” in Proceedings of the Twenty-second International Sym-
posium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks
and Mobile Computing, 2021, pp. 21–30.
[13] X. Fu and E. Modiano, “Elastic job scheduling with unknown utility functions,” vol. 49,
no. 3. ACM New York, NY, USA, 2022, pp. 67–68.
[14] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint arXiv:1807.02811, 2018.
[15] M. Thomas and A. T. Joy, Elements of information theory. Wiley-Interscience, 2006.
[16] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.
[17] M. F. Huber, T. Bailey, H. Durrant-Whyte, and U. D. Hanebeck, “On entropy approxi-
mation for gaussian mixture random vectors,” in 2008 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems. IEEE, 2008, pp. 181–188.
電子全文 電子全文(網際網路公開日期:20251024)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top