跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王耀廷
研究生(外文):WANG, YAO-TING
論文名稱:奈米鎳鈦多層膜之電性研究
論文名稱(外文):Study on the Electrical Properties of Nanoscale Nickel-Titanium Multilayer Films
指導教授:李炤佑
指導教授(外文):LEE, CHAO-YU
口試委員:方昭訓余英松
口試委員(外文):FANG, JAU-SHIUNGYU, ING-SONG
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:81
中文關鍵詞:奈米鎳鈦多層膜電子束蒸鍍碳化矽矽基板玻璃基板
外文關鍵詞:Nickel-titanium Nano-multilayer filmsElectron beam depositionSilicon carbideSilicon substrateGlass substrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
鎳鈦合金系統由於具備良好的耐腐蝕性、高生物相容性及優異的機械性能,並且擁有形狀記憶效應之特性,在各領域間都極具潛力。透過薄膜沉積技術,鎳鈦合金系統可以以多層膜的方式沉積於基板表面,形成鎳鈦金屬薄膜。
本研究以六種不同雙層週期膜厚之鎳鈦奈米多層膜,主要量測各雙層週期厚度條件之電流-電壓變化,以分析不同週期厚度對電性之影響。實驗以碳化矽(SiC)基板、矽(Si)基板及玻璃(Glass)基板作為沉積之基板,並將鎳/鈦分別以1:1、2:3之膜厚比例,週期性地沉積於基板上。由於鎳發生氧化時,會在表面形成緻密並帶有保護性質的氧化層,使鎳的氧化速率緩慢,所以在沉積完膜厚參數後,再沉積上一層2nm的鎳作為防氧化保護層。通過表面輪廓儀(Alpha step)量測,觀察沉積前後的表面粗糙度變化,並使用掃描式電子顯微鏡(SEM)觀察不同週期膜厚的鎳鈦奈米多層膜之表面形貌。通過能量散射光譜儀(EDS)分析鎳鈦奈米多層膜之元素分析,使用X射線繞射分析儀(XRD)對樣品進行結晶性之分析,使用微小維氏硬度試驗機得知各週期厚度的機械性質,並使用四點探針(Four point Probe)量測各樣品在提升電壓的情況下的電阻變化,從而分析各個週期厚度的鎳鈦奈米多層膜之電性差異。

The nickel-titanium alloy system has great potential in various fields due to its excellent corrosion resistance, high biocompatibility, and superior mechanical properties, as well as its characteristic shape memory effect. Through thin-film deposition techniques, the nickel-titanium alloy system can be coated on the surface of a substrate in a multilayer film structure, forming nickel-titanium metal films.
This study investigates the electrical properties of nickel-titanium nanolayered films with six different bilayer periodic thicknesses. The main focus is to measure the current-voltage variations under different bilayer thickness conditions to analyze their impact on electrical behavior. The experiments use silicon carbide (SiC), silicon (Si), and glass substrates for deposition, and nickel/titanium is deposited in a periodic manner with a 1:1 and 2:3 thickness ratio.To prevent oxidation of nickel, a protective oxide layer is formed on the surface when nickel is oxidized, leading to a slow oxidation rate. Therefore, after depositing the film thickness parameters, an additional 2nm layer of nickel is deposited as an anti-oxidation protective layer. The surface roughness changes before and after deposition are measured using a surface profiler (Alpha step), and the surface morphology of the different periodic thicknesses of nickel-titanium nanolayered films is observed using scanning electron microscopy (SEM).Elemental analysis of the nickel-titanium nanolayered films is performed using Energy Dispersive Spectroscopy (EDS), and their crystallinity is analyzed using X-ray Diffraction (XRD). The mechanical properties of each periodic thickness are determined using a micro Vickers hardness testing machine. The electrical resistance variation of each sample under increasing voltage is measured using a four-point probe, allowing for an analysis of the electrical differences among the different periodic thicknesses of nickel-titanium nanolayered films.

摘要......i
Abstract....ii
誌謝...iv
目錄....v
表目錄...viii
圖目錄....ix
第一章 緒論....1
1.1 前言....1
1.2 研究動機....2
第二章 理論基礎與文獻回顧...3
2.1 非線性電阻....3
2.2 物理氣相沉積......4
2.2.1 電子束蒸鍍原理.....5
2.2.2 電子束物理氣相沉積...7
2.2.3 平均自由路徑......9
2.3 四點探針......9
2.3.1 四點探針原理......10
2.4 蒸鍍靶材與基板材料之性質.......13
2.4.1 碳化矽基板....13
2.4.2 單晶矽基板....15
2.4.3 玻璃基板.....15
2.4.4 鎳......17
2.4.5 鈦.......18
第三章 實驗流程與儀器介紹...19
3.1 實驗材料...19
3.1.1 蒸鍍靶材...19
3.1.2 實驗基板....19
3.1.3 清洗用品....19
3.2 實驗流程.....19
3.3 實驗參數......21
3.3.1 膜厚參數.....21
3.4 實驗儀器.....23
3.4.1 電子束蒸鍍機(E-beam Evaporator)....23
3.5 分析儀器及原理....23
3.5.1 掃描式電子顯微鏡(Scanning Eleectron Microscope).....23
3.5.2 能量散射X射線光譜儀(Energy-Dispersive X-ray Spectroscopy,EDS).....24
3.5.3 表面輪廓量測儀(Alpha step)...25
3.5.4 四點探針量測儀(Four-Point Probe)......26
3.5.5 微小維氏硬度試驗機(Vickers Hardness Test)...27
3.5.6 光學數位顯微鏡(Optical microscope)....28
第四章 實驗結果與討論....29
4.1 鎳鈦多層膜之實際膜厚與表面形貌........29
4.1.1 實際薄膜厚度.....29
4.1.2 表面形貌觀察.....30
4.2 鎳鈦多層膜之成分分析.....39
4.2.1 元素組成成分分析.....39
4.3 鎳鈦多層膜之機械性質.....49
4.3.1 微小維氏硬度.....49
4.3.2 表面壓痕形貌.....51
4.4 鎳鈦多層膜之電性分析....61
4.4.1 I-V曲線....61
4.4.2 電阻率...67
第五章 結論.....73
參考文獻.......74


[1]Mayergoyz, I. D., & Lawson, W. (1997). Basic electric circuit theory: a one-semester text. Gulf Professional Publishing.Chapter 5 pp.143-173.
[2]Fatoorehchi, H., Abolghasemi, H., & Zarghami, R. (2015). Analytical approximate solutions for a general nonlinear resistor–nonlinear capacitor circuit model. Applied Mathematical Modelling, 39(19), 6021-6031.
[3]陳柏霖. (2016). 氮化鎵在圖形化 4H-SiC 基板上的磊晶.國立交通大學,新竹.
[4]Huang, H., Wang, B. L., Wang, Y., Zou, J., & Zhou, L. (2008). Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding. Materials Science and Engineering: A, 479(1-2), 373-379.
[5]Stanley, K. W. (1973). Non-linear resistors. Radio and Electronic Engineer, 43(10), 609-612.
[6]De Pablo, P. J., Gómez-Navarro, C., Colchero, J., Serena, P. A., Gómez-Herrero, J., & Baró, A. M. (2002). Nonlinear resistance versus length in single-walled carbon nanotubes. Physical Review Letters, 88(3), 036804.
[7]Becker, J. A., Green, C. B., & Pearson, G. (1946). Properties and uses of thermistors—Thermally sensitive resistors. Electrical Engineering, 65(11), 711-725.
[8]Levine, J. D. (1975). Theory of varistor electronic properties. Critical Reviews in Solid State and Material Sciences, 5(4), 597-608.
[9]Denisov, B. N. (2007). A photoresistor as a multifunctional optoelectronic element. Journal of Communications Technology and Electronics, 52, 478-481.
[10]Mayergoyz, I. D., & Lawson, W. (1997). Basic electric circuit theory: a one-semester text. Gulf Professional Publishing.
[11]郭倩丞. (2007). 高密度分波多工器 (DWDM) 濾光片的應力與溫飄特性研究(Doctoral dissertation).國立中央大學,桃園.
[12]高郁婷, & 李威儀. (2010). 蕭特基紫外光偵測器製作於獨立式氮化鎵基板上之研究(Doctoral dissertation).國立交通大學,新竹.
[13]Singh, J., & Wolfe, D. E. (2005). Review Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD). Journal of materials Science, 40, 1-26.
[14]Floro, J. A., Chason, E., Cammarata, R. C., & Srolovitz, D. J. (2002). Physical origins of intrinsic stresses in Volmer–Weber thin films. MRS bulletin, 27(1), 19-25.
[15]Utke, I., Friedli, V., Amorosi, S., Michler, J., & Hoffmann, P. (2006). Measurement and simulation of impinging precursor molecule distribution in focused particle beam deposition/etch systems. Microelectronic engineering, 83(4-9), 1499-1502.
[16]市村正也. 真空技術超入門. Journal of the Vacuum Society of Japan, 2015, 58.8: 273-281.
[17]Miccoli, I., Edler, F., Pfnür, H., & Tegenkamp, C. (2015). The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter, 27(22), 223201.
[18]關自強. (2014). ITO薄膜方塊電阻测試方法的探討.真空, 51(3), 44-48.
[19]Schuetze, A. P., Lewis, W., Brown, C., & Geerts, W. J. (2004). A laboratory on the four-point probe technique. American Journal of Physics, 72(2), 149-153.
[20]Li, J. C., Wang, Y., & Ba, D. C. (2012). Characterization of semiconductor surface conductivity by using microscopic four-point probe technique. Physics Procedia, 32, 347-355.
[21]Sze, S. M. (2008). Semiconductor devices: physics and technology. John wiley & sons.
[22]Petersen, C. L., Hansen, T. M., Bøggild, P., Boisen, A., Hansen, O., Hassenkam, T., & Grey, F. (2002). Scanning microscopic four-point conductivity probes. Sensors and Actuators A: Physical, 96(1), 53-58.
[23]Casady, J. B., & Johnson, R. W. (1996). Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electronics, 39(10), 1409-1422.
[24]Dreike, P. L., Fleetwood, D. M., King, D. B., Sprauer, D. C., & Zipperian, T. E. (1994). An overview of high-temperature electronic device technologies and potential applications. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(4), 594-609.
[25]Nader, M., Aldinger, F., & Hoffmann, M. J. (1999). Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide. Journal of Materials Science, 34(6), 1197-1204.
[26]許欣怡, & 張立. (2006). (100) 矽基材上立方晶碳化矽層對方向性鑽石形成之影響 (Doctoral dissertation).國立交通大學,新竹
[27]李文鴻.(2001).電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長的研究(Doctoral dissertation).國立臺灣科技大學,台北
[28]Deva Reddy, J. (2007). Mechanical properties of silicon carbide (SiC) thin films.
[29]Scheeper, P. R., Van der Donk, A. G. H., Olthuis, W., & Bergveld, P. (1994). A review of silicon microphones. Sensors and actuators A: Physical, 44(1), 1-11.
[30]Petersen, K. E. (1982). Silicon as a mechanical material. Proceedings of the IEEE, 70(5), 420-457.
[31]詹明賢.(2014).單晶與多晶矽基板鑽石線鋸加工之切屑分析研究(碩士論文).國立臺灣科技大學,台北
[32]汪建民. (1999). 陶瓷技術手冊. 中華民國產業科技發展協進會, 中華民國冶金學會, 413-414.
[33]鄧力. (2018).國内外特種玻璃研發與應用新動態.玻璃與搪瓷,46(1), 38-48.
[34]彭壽, & 張冲. (2012).平板玻璃在光電顯示領域的應用與發展趨勢.中國玻璃, (2), 3-8.
[35]Zachariasen, W. H. (1932). The atomic arrangement in glass. Journal of the American Chemical Society, 54(10), 3841-3851.
[36]Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976). Introduction to ceramics (Vol. 17). John wiley & sons.
[37]林怡芬,郭正次. (2004).包覆鐵碳奈米結構之製程和磁退火後處理及性質分析 (Doctoral dissertation). .國立交通大學,新竹
[38]De Los Santos Valladares, L., Ionescu, A., Holmes, S., Barnes, C. H., Bustamante Domínguez, A., Avalos Quispe, O., ... & Majima, Y. (2014). Characterization of Ni thin films following thermal oxidation in air. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32(5), 051808.
[39]劉世锋,宋璽,薛彤,馬寧,王岩, &王立強. (2020). 鈦合金及鈦基複合材料在航空航天的應用和發展. 航空材料學報, 40(3), 77-94.
[40]Chawla, V., Jayaganthan, R., Chawla, A. K., & Chandra, R. (2008). Morphological study of magnetron sputtered Ti thin films on silicon substrate. Materials Chemistry and Physics, 111(2-3), 414-418.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top