跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉諭勲
研究生(外文):YEH, YU-HSUN
論文名稱:DSP 控制之高功因電池充電器
論文名稱(外文):Implementation of a High-Power-Factor Battery Charger with DSP Control
指導教授:張永農張永農引用關係
指導教授(外文):CHANG, YONG-NONG
口試委員:華志強莫清賢
口試委員(外文):HUA, CHIH-CHIANGMO, CHING-HSIEN
口試日期:2023-07-05
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:89
中文關鍵詞:DSP 數位控制功率因數修正器零電壓切換零電流切換電池儲能
外文關鍵詞:DSP digital controlPower Factor Correctionzero-voltage-switchingzero-current-switchingbattery charger
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文完成一 DSP 控制之高功因電池充電器,可因應不同的車用儲能電池電壓位準完成電池儲能。本論文電路架構採用雙級組成,前級以圖騰式功率因數修正器透過連續導通模式的平均電流控制法完成交流電網端對直流端的交/直流轉換,後級串接一隔離型 LLC 諧振轉換器並透過諧振元件達成柔性切換,降低各功率開關切換損失及電磁干擾問題,進而使轉換器之整機轉換效率能有效提升。
本論文控制器採用德州儀器公司(Texas Instruments)開發的數位信號處理器TMS320F28335 為本轉換器之系統控制核心,建構交流電網端(AC Grid)固定電壓 220 V,電動車電池端為 280~403 V 之交/直流電池充電器。最後完成一 1k W 電池充電器設計,經實驗結果得出工作於輸入 220 V 滿載輸出時,功率因數最高可達 0.996、總諧波失真小於 8.8%且整機效率可達 94.6%,具電氣隔離與寬範圍電壓輸出之單相電源電池充電系統,以驗證所提出設計方法及理論分析之正確性。
This thesis presents a Implementation of a High-Power-Factor Battery Charger with DSP Control different voltage levels of electric vehicle batteries for battery energy storage. The circuit architecture of the study consists of two stages. The front stage utilizes a totem-pole power factor correction (PFC) controller and achieves AC/DC conversion from the AC grid side to the DC battery side through the average current control method in continuous conduction mode (CCM). The rear stage of the circuit is connected to an isolated LLC resonance converter, which utilizes resonance components for flexible switching, reducing Mosfet switching losses and Electromagnetic Interference (EMI), thereby effectively improving the converter's efficiency.
The controller used in this thesis is the TMS320F28335 digital signal processor developed by Texas Instruments, serving as the system control core of the converter. It constructs an AC Grid with a fixed voltage of 220 V and an AC/DC battery charger control system with a battery voltage range of 280-403 V for electric vehicles. Finally, a 1 kW battery charger design is completed. Experimental results show that when operating with an input of 220 V and at full load output, the power factor can reach a maximum of 0.996, THD is less than 8.8%, and the overall efficiency of the system can reach 94.6%. It verifies the proposed design methodology and theoretical analysis for an electrically solated single-phase power supply battery charging system with wide voltage range utput.
摘要..............................i
Abstract..............................ii
誌謝..............................iii
目錄..............................iv
表目錄..............................v
圖目錄..............................vi
第一章 緒論..............................1
1.1 研究動機與目的..............................1
1.2 文獻探討..............................2
1.3 論文大綱..............................6
第二章 高功因電池充電器介紹分析..............................7
2.1 電路架構介紹..............................7
2.2 功率因數修正定義分析..............................8
2.3 無橋PFC-電路動作原理分析..............................9
2.4 無橋PFC電壓增益特性分析..............................16
2.5 隔離型全橋LLC諧振轉換器介紹..............................19
2.6 隔離型全橋LLC諧振轉換器電路動作原理分析..............................20
2.7 隔離型全橋LLC諧振轉換器電壓增益特性分析..............................28
第三章 電路參數設計與驗證..............................32
3.1 轉換器之電路系統規格訂定..............................32
3.2 無橋PFC電路參數設計與元件選用..............................33
3.3 隔離型全橋LLC諧振轉換器電路參數設計與元件選用..............................39
3.4 周邊硬體電路設計..............................51
第四章 數位控制器補償迴路設計..............................53
4.1 控制系統架構介紹..............................53
4.2 數位控制器與採樣電路設計..............................54
4.3 模擬結果..............................62
第五章 實驗結果量測與分析..............................65
5.1 轉換器元件參數與量測儀器使用..............................65
5.2 無橋功率因數修正器實驗波形量測..............................66
5.3 隔離型全橋LLC諧振轉換器實驗波形量測..............................70
5.4 轉換器CC-CV充電測試..............................75
5.5 效率分析..............................77
第六章 結論與未來展望..............................80
6.1 結論..............................80
6.2 未來展望..............................80
參考文獻..............................81
Extended Abstract..............................85


[1]Rolan lrle, EV-Volumes,”Global EV Sales for 2022”, EV-VOLUMES.COM.
[2]A. Jain, K. K. Gupta, S. K. Jain and P. Bhatnagar, "A Bidirectional Five-Level Buck PFC Rectifier With Wide Output Range for EV Charging Application," IEEE Transactions on Power Electronics, vol. 37, no. 11, pp. 13439-13455, Nov. 2022.
[3]A. Chandwani, S. Dey and A. Mallik, "Cybersecurity of Onboard Charging Systems for Electric Vehicles—Review, Challenges and Countermeasures," IEEE Access, vol. 8, pp. 226982-226998, 2020.
[4]A. Naziris, A. Frances, R. Asensi and J. Uceda, "Black-Box Small-Signal Structure for Single-Phase and Three-Phase Electric Vehicle Battery Chargers," IEEE Access, vol. 8, pp. 170496-170506, 2020.
[5]D. Wang, X. Qu, Y. Yao and P. Yang, "Hybrid Inductive-Power-Transfer Battery Chargers for Electric Vehicle Onboard Charging With Configurable Charging Profile," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 592-599, Jan. 2021.
[6]S. Wang et al., "Multifunction Capability of SiC Bidirectional Portable Chargers for Electric Vehicles," IEEE Journal of Emerging and Selected Topics in Power Electronics,vol.9,no. 5, pp. 6184-6195, Oct. 2021.
[7]H. Li, Z. Zhang, S. Wang, J. Tang, X. Ren and Q. Chen, "A 300-kHz 6.6-kW SiC Bidirectional LLC Onboard Charger," IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1435-1445, Feb. 2020.
[8]H. Kim, J. Park, S. Kim, R. M. Hakim, H. Belkamel and S. Choi, "A Single-Stage Electrolytic Capacitor-Less EV Charger With Single- and Three-Phase Compatibility," IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6780-6791, June 2022.
[9]M. Su et al., "A Natural Bidirectional Isolated Single-Phase AC/DC Converter With Wide Output Voltage Range for Aging Test Application in Electric Vehicle," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 3, pp. 3489-3500, June 2021.
[10]T. Bang and J. -W. Park, "Development of a ZVT-PWM Buck Cascaded Buck–Boost PFC Converter of 2 kW With the Widest Range of Input Voltage," IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2090-2099, March 2018.
[11]A. H. Memon, M. H. Baloach, A. A. Sahito, A. M. Soomro and Z. A. Memon, "Achieving High Input PF for CRM Buck-Buck/Boost PFC Converter," IEEE Access, vol. 6, pp. 79082-79093, 2018.
[12]K. Yao et al., "A Scheme to Improve Power Factor and Dynamic Response Performance for CRM/DCM Buck–Buck/Boost PFC Converter," IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 1828-1843, Feb. 2021.
[13]X. Lin and F. Wang, "New Bridgeless Buck PFC Converter with Improved Input Current and Power Factor," IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7730-7740, Oct. 2018.
[14]W. Qi, S. Li, H. Yuan, S. -C. Tan and S. -Y. Hui, "High-Power-Density Single-Phase Three-Level Flying-Capacitor Buck PFC Rectifier," IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 10833-10844, Nov. 2019.
[15]K. Yao, C. Mao, K. Chen, L. Li and H. Tang, "Adequate Usage Rate Control of Switching Cycles for DCM Buck PFC Converter," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 1, pp. 732-748, March 2020.
[16]G. d. S. Fischer, C. Rech and Y. R. de Novaes, "Extensions of Leading-Edge Modulated One-Cycle Control for Totem-Pole Bridgeless Rectifiers," IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 5447-5460, May 2020.
[17]Q. Lin, B. Wen, R. Burgos, X. Li, Q. Wang and X. Li, "Input Impedance Modeling and Experimental Validation of a Single-Phase PFC in the D-Q Frame," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 7371-7384, Dec. 2022.
[18]J. W. -T. Fan, R. S. -C. Yeung and H. S. -H. Chung, "Optimized Hybrid PWM Scheme for Mitigating Zero-Crossing Distortion in Totem-Pole Bridgeless PFC," IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 928-942, Jan. 2019.
[19]C. Zhang, K. Qu, B. Hu, J. Wang, X. Yin and Z. J. Shen, "A High-Frequency Dynamically Coordinated Hybrid Si/SiC Interleaved CCM Totem-Pole Bridgeless PFC Converter," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 2, pp. 2088-2100, April 2022.
[20]A. Mallik, J. Lu and A. Khaligh, "Sliding Mode Control of Single-Phase Interleaved Totem-Pole PFC for Electric Vehicle Onboard Chargers," IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8100-8109, Sept. 2018.
[21]J. -Y. Lee, J. -H. Chen and K. -Y. Lo, "Design of a GaN Totem-Pole PFC Converter Using DC-Link Voltage Control Strategy for Data Center Applications," IEEE Access, vol. 10, pp. 50278-50287, 2022.
[22]Q. Huang, R. Yu, Q. Ma and A. Q. Huang, "Predictive ZVS Control With Improved ZVS Time Margin and Limited Variable Frequency Range for a 99% Efficient, 130-W/in3 MHz GaN Totem-Pole PFC Rectifier," IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 7079-7091, July 2019.
[23]Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. A. de Rooij, "99% Efficient 2.5-kW Four-Level Flying Capacitor Multilevel GaN Totem-Pole PFC," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5795-5806, Oct. 2021.

[24]Y. Xu, J. Wang, K. Xiong and G. Yin, "A novel 5-level flying capacitor bridgeless PFC converter based on cost-effective low-voltage eGaN FETs," Chinese Journal of Electrical Engineering, vol. 6, no. 3, pp. 56-64, Sept. 2020.
[25]H. Wang, M. Shang and A. Khaligh, "A PSFB-Based Integrated PEV Onboard Charger With Extended ZVS Range and Zero Duty Cycle Loss," IEEE Transactions on Industry Applications, vol. 53, no. 1, pp. 585-595, Jan.-Feb. 2017.
[26]G. Di Capua, S. A. Shirsavar, M. A. Hallworth and N. Femia, "An Enhanced Model for Small-Signal Analysis of the Phase-Shifted Full-Bridge Converter," IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1567-1576, March 2015.
[27]B. Zhao, Q. Yu and W. Sun, “Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid”, IEEE Transactions on Power Systems, vol. 27, no. 11, pp. 4667-4680, 2012.
[28]B. Zhao, Q. Song, W. Liu et al.,“Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system”, IEEE Transactions on Power Systems, vol. 29, no. 8, pp. 4091-4106, 2014.
[29]S. Zhang and X. Wu, "Low Common Mode Noise Half-Bridge LLC DC–DC Converter With an Asymmetric Center Tapped Rectifier," IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1032-1037, Feb. 2019.
[30]R. -L. Lin and L. -H. Huang, "Efficiency Improvement on LLC Resonant Converter Using Integrated LCLC Resonant Transformer," IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1756-1764, March-April 2018.
[31]Z. Shi, Y. Tang, Y. Guo, X. Li and H. Sun, "Optimal Design Method of LLC Half-Bridge Resonant Converter Considering Backflow Power Analysis," IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 3599-3608, April 2022.
[32]J. A. Martín-Ramos, P. J. Villegas Sáiz, A. M. Pernía, J. Díaz and J. A. Martínez, "Optimal Control of a High-Voltage Power Supply Based on the PRC-LCC Topology With a Capacitor as Output Filter," IEEE Transactions on Industry Applications, vol. 49, no. 5, pp. 2323-2329, Sept.-Oct. 2013.
[33]R. Yang, H. Ding, Y. Xu, L. Yao and Y. Xiang, "An Analytical Steady-State Model of LCC type Series–Parallel Resonant Converter With Capacitive Output Filter," IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 328-338, Jan. 2014.
[34]F. J. Azcondo, A. de Castro, V. M. Lopez and O. Garcia, "Power Factor Correction Without Current Sensor Based on Digital Current Rebuilding," IEEE Transactions on Power Electronics, vol. 25, no. 6, pp. 1527-1536, June 2010.
[35]Y. -F. Liu, E. Meyer and X. Liu, "Recent Developments in Digital Control Strategies for DC/DC Switching Power Converters," IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2567-2577, Nov. 2009.

[36]M. Imaizumi and N. Miura, "Characteristics of 600, 1200, and 3300 V Planar SiC-MOSFETs for Energy Conversion Applications," IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 390-395, Feb. 2015.
[37]Q. Song et al., "4H-SiC Trench MOSFET With L-Shaped Gate," IEEE Electron Device Letters, vol. 37, no. 4, pp. 463-466, April 2016.
[38]W. Sung and B. J. Baliga, "On Developing One-Chip Integration of 1.2 kV SiC MOSFET and JBS Diode (JBSFET)," IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8206-8212, Oct. 2017.
[39]“IEC 61000-3-2”, PDF.
[40]A. Pratt, P. Kumar and T. V. Aldridge, “Evaluation of 400V DC Distribution in Telco
and Data Centers to Improve Energy Efficiency,” IEEE 2007.
[41]“MAGNETIC POWDER CORES”, CSC, PDF.
[42]“MAGNETIC C058438A2 DATASHEET”, PDF.
[43]“Mn-Zn Ferrite Material Characteristics” TDK Electronics Inc, 2018.
[44]“Mn-Zn Ferrite Cores for Switching Power Supplies PQ series”, PDF.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊