跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/13 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何昶彥
研究生(外文):HO, CHANG-YEN
論文名稱:伺服鍛造製程摩擦分析及其應用於汽車元件
論文名稱(外文):Friction analysis of servo forging process and application to automotive components
指導教授:楊東昇楊東昇引用關係
指導教授(外文):YANG, TUNG-SHANG
口試委員:張燦勳鄭芳松
口試委員(外文):HANG, TSAN-HSUNCHENG, FANG-SUNG
口試日期:2023-07-25
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:81
中文關鍵詞:伺服運動曲線摩擦伺服鍛造汽車零件分析
外文關鍵詞:Servo motion curveFrictionServo forgingAnalysis of automotive parts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的主要目標在於探討在伺服鍛造過程中,伺服運動曲線在沖頭提起時,潤滑油回流所產生的再潤滑現象對於材料與模具間摩擦行為的影響。為了觀察這種摩擦行為,論文採用穩定組合的正向和反向擠壓試驗(SCFBE),該試驗適用於複雜且介面壓力高的冷鍛過程。研究論文在此基礎上,探討不同潤滑劑和伺服運動曲線對模具與胚料表面摩擦行為的影響,並使用校準曲線來得到不同情況下的摩擦係數。
論文的重點是觀察工件在使用伺服運動曲線與傳統運動曲線對於摩擦時汽車零件內部齒型鍛造的影響。這包括持壓時間、成形脈衝頻率、沖頭速度、持壓脈衝頻率和背壓力對內部齒型尺寸、鍛流線表面粗糙度、成形力、應變和應力分佈的影響。藉由實驗設計,論文尋求最佳尺寸精度、伺服運動曲線和表面粗糙度,以達到精密鍛造的要求,減少後續機械鍛造工序,同時提升表面粗糙度、成品精度和生產效率,以製造精密金屬元件。


The main objective of this research paper is to investigate the influence of re-lubrication phenomenon caused by lubricant reflux during the upward motion of the punch on the friction behavior between the material and the die in servo forging processes. To observe this friction behavior, the paper employs the Stable Combined Forward and Backward Extrusion (SCFBE) test, which is suitable for complex and high-interface pressure cold forging processes. Building upon this foundation, the study explores the effects of different lubricants and servo motion curves on the friction behavior between the die and the workpiece surface, and utilizes calibration curves to obtain friction coefficients under different conditions.
The focus of the paper is to observe the impact of using servo motion curves versus traditional motion curves on the frictional behavior during the internal gear forging of automotive parts. This includes investigating the influence of hold pressure time, forming pulse frequency, punch velocity, hold pulse frequency, and back pressure on the internal gear dimensions, forging flow line surface roughness, forming force, strain, and stress distribution. Through experimental design, the paper seeks to achieve optimal dimensional accuracy, servo motion curves, and surface roughness to meet the requirements of precision forging, reduce subsequent machining processes, while improving surface finish, product accuracy, and production efficiency in the manufacturing of precision metal components.

摘要... i
Abstract... ii
誌謝... iii
目錄... iv
表目錄.. vi
圖目錄.. vii
符號說明........ x
第一章 緒論..... 1
1.1前言........ 1
1.2研究動機與目的....... 2
1.3文獻回顧..... 4
1.4研究方法與步驟....... 6
第二章 基礎理論......... 9
2.1鋁合金特性簡介[22]... 9
2.2 鍛造之塑性加工理論[23]....... 9
2.3 摩擦理論.... 11
2.4 DEFORM軟體簡介[24].. 11
2.5 FORGE軟體簡介[25]... 14
第三章 鋁合金材料機械性質與摩擦試驗....... 16
3.1材料性質應力應變曲線.. 16
3.1.1 材料規範.. 16
3.1.2 壓縮試片規格...... 16
3.1.3 實驗設備.. 17
3.1.4圓柱材料壓縮試驗... 18
3.1.5圓柱材料應力應變曲線圖...... 19
3.2 SCFBE應用於傳統與伺服運動曲線摩擦分析. 20
3.2.1 穩定組合的正向和反向擠壓模具設計.... 21
3.2.2 穩定組合的正向和反向擠壓模具設計與材料界面摩擦試驗結果........ 25
第四章 伺服運動曲線應用於應用於汽車精密元件................ 31
4.1模擬網格收斂性分析.... 33
4.2 汽車元件之第一道次模擬分析... 33
4.2.1 傳統運動曲線模式之電腦輔助工程分析.. 34
4.2.2等效應力與等效應變之探討.... 36
4.2.3傳統運動曲線應用第一道次鍛件分析之衝頭成形力探討...... 37
4.3汽車元件第一道次鍛造實務...... 38
4.3.1 模具與製程參數.... 38
4.3.2 傳統鍛造應用鍛造實驗驗證... 40
4.4 伺服鍛造與傳統鍛造應用汽車元件之第二道次電腦輔助分析.... 43
4.4.1 伺服與傳統鍛造應用於電腦輔助工程分析......... 44
4.4.2 伺服運動曲線與傳統運動曲線應用於汽車元件鍛件成形之分析參數.... 45
4.4.3 等效應力及等效應變之探討... 47
4.4.4 衝頭成形力探討.... 52
4.5 伺服與傳統鍛造應用於汽車元件第二道次鍛造實務... 57
4.5.1 伺服與傳統鍛造應用鍛造製程......... 57
4.5.2 伺服與傳統運動曲線應用鍛造實驗驗證.......... 58
4.6汽車元件鍛件尺寸之外觀量測探討................. 60
4.7 汽車元件鍛件表面粗糙度之量測探討...... 62
4.8 汽車元件鍛件硬度及金相組織之量測探討.. 63
第五章 結論..... 74
參考文獻........ 75
Extended Abstract...... 77


[1]財團法人金屬工業研究發展中心,造產品高值化進軍全球市場,2002,。https://www.moea.gov.tw/mns/doit/achievement/Achievements2.aspx?menu_id=5390&ac_id=1424
[2]黃呂翔,2012,“先進高強度剛板於伺服沖床引伸成形研究”,國立交通大學,碩士論文。
[3]吳宗彥,2014,“伺服沖床衝頭運動曲線之研究”,國立清華大學,碩士論文。
[4]M. Ryo, O. Kozo ,2010, “Ductility of a magnesium alloy in warm forging with controlled forming speed using a CNC servo press", Journal of Materials Processing Technology, Vol.210, pp.2029–2035.
[5]K. Kiichiro, Y. Takeshi, O. Masato, K. Satoshi, C. Junpei, 2014, "Optimum back-pressure forging using servo die cushion", Procedia Engineering, Vol.81, pp.346 – 351.
[6]M. Ryo, J. Y. Jeon, U. Hiroshi , 2013,"Shape accuracy in the forming of deep holes with retreat and advance pulse ram motion on a servo press", Journal of Materials Processing Technology, Vol.213, pp.770 – 778.
[7]F.Vollertsen, H.Schulze Niehoff, Z.Hu, 2006,“State of the art in micro forming”, International Journal of Machine Tools and Manufacture, Vol. 46, pp. 1172-1179.
[8]T. Maeno, K. Mori, A. Hori, 2014, "Application of load pulsation using servo press to plate forging of stainless steel parts", Journal of Materials Processing Technology, Vol.214, pp1379–1387.
[9]楊東昇、張宇良,2017 ,“SPCD鋼板機械性質及摩擦特性且應用於伺服運動曲線之深引伸製程”,第三屆臺灣磨潤科技研討會,台南。
[10]U.Engel and R.Eckstein, 2002, “Microforming—from basic research to its realization”, J. Mater. Process. Technol, 125–126, pp. 35–44, January.
[11]A.Barcellona, L.Cannizzaro, A.Forcellese, F.Gabrielli, 1996“Validation of Frictional Studies by Double-Cup Extrusion Tests in Cold-Forming”, Anneals of the CIRP, Vol. 45, pp. 211-214.
[12]M. Kunogi,1956, “A new method of cold extrusion”, J. Sci. Res. Inst. (Tokyo), Vol. 50, pp. 215–246.
[13]A. T. Male, M. G. Cockcroft, 1964,“A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation”, J. Inst. Met., Vol. 93, pp. 38–46.
[14]A. Buschhausen, K. Weinmann, J. Y. Lee, T. Altan, , 1992 ,“Evaluation of lubrication and friction in cold forging using a double backward-extrusion process”, J. Mater. Process Technol. Vol. 33, pp. 95–108.
[15]M. Arentoft, C. Vigs, M. Lindegren, N. Bay, 1996,“A study of the double cup extrusion process as a friction test”, In: Proc. of the 5th ICTP, Columbus Ohio, USA. pp. 243–250.
[16]T. Schrader, M. Shirgaokar, T. Altan, 2007 ,“A critical evaluation of the double cup extrusion test for selection of cold forging lubricants”, J. Mater. Process Technol, Vol. 189, pp. 36–44.
[17]M. Arentoft, C. Vigs, M. Lindegren, N. Bay, 1996 ,“A study of the double cup extrusion process as a friction test”, In: Proc. of the 5th ICTP. Columbus Ohio, USA. pp. 243–250.
[18]N. Bay, J. Hunding, K. Kuzman, E. Pfeifer, 1996, “Testing of friction in cold forging by combined forward rod/backward cup extrusion”, In: Proc. of the 5th ICTP, Columbus Ohio, USA, pp. 311–318.
[19]K. Kuzman, E. Pfeifer, N. Bay, J. Hunding, 1996,“Control of material flow in a combined backward can-forward rod extrusion,” J. Mater. Process Technol., Vol 60, pp. 141–147.
[20]T. Nakamura, N. Bay, Z. L. Zhang, 1997 ,“FEM simulation of friction testing method based on combined forward rod-backward can extrusion”, J. Tribol. Vol. 119, pp. 501–506.
[21]C. Hu, Q. Yin, Z. Zhao, 2017, “A novel method for determining friction in cold forging of complex parts using a steady combined forward and backward extrusion test”, J. Mater. Process Technol., Vol 249, pp. 57–66.
[22]張印本、楊良太、簡汶彬、余沛麒,金屬材料對照手冊(含各國標準),全華出版社。
[23]許源泉,2012,塑性加工學(第二版),全華出版社。
[24]DEFORM User’s Guide, 1999, “Scientific Forming Technologies Corporation.” Columbus OH.
[25]FORGE軟體原廠手冊,Transvalor,https://www.transvalor.com/
[26]張印本、楊良太、簡汶彬、余沛麒,金屬材料對照手冊(含各國標準),全華出版社。

電子全文 電子全文(網際網路公開日期:20280802)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top