跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張寶諭
研究生(外文):CHANG, BAO-YU
論文名稱:陰極電弧蒸鍍氮化鋁鈦矽及氮化鋁鉻矽多層薄膜之機械性質與熱穩定性能分析
論文名稱(外文):Mechanical properties and thermal stabilities of AlTiSiN/AlCrSiN multialyer coatings deposited by cathodic arc evaporation
指導教授:張銀祐
指導教授(外文):CHANG, YIN-YU
口試委員:張銀祐方昭訓吳宛玉
口試委員(外文):CHANG, YIN-YUFANG, ZHAO-XUNWU, WAN-YU
口試日期:2023-07-25
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:98
中文關鍵詞:陰極電弧蒸鍍氮化物薄膜熱穩定性機械性質
外文關鍵詞:CAENitride CoatingThermal stabilityMechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中採用陰極電弧蒸鍍技術(CAE),搭配鋁鈦矽(AlTiSi)、鋁鉻矽(AlCrSi)、純鉻靶(Cr),沉積氮化鋁鈦矽(AlTiSiN)、氮化鋁鉻矽(AlCrSiN)。同時利用兩個靶材共鍍AlTiSiN / AlCrSiN元多層氮化物薄膜,再針對AlTiSiN及AlCrSiN靶電流進行優化,調整薄膜元素原子比例以提升薄膜高溫性質。接著進行雷射熱疲勞試驗,針對薄膜多層薄膜的微結構、機械性質進行探討。
本研究使用多種儀器來分析薄膜的特性,其中使用場發射掃描式電子顯微鏡(FESEM)和場發射穿透式電子顯微鏡(FETEM)來觀察薄膜橫截面微結構,利用場發射電子微探儀(EPMA)進行薄膜元素成分分析,並使用低掠角薄膜X光繞射儀(GIXRD)分析薄膜晶體結構和結晶相。此外機械性質的部分,還使用洛式壓痕試驗機及刮痕試驗機來評估薄膜與基材之間的附著力,並使用奈米壓痕試驗機和球對盤磨耗試驗機來量測薄膜的硬度、彈性係數和抗磨耗性能。最後,對於薄膜的雷射熱疲勞試驗實驗,利用二次離子質譜儀(TOF-SIMS)與化學分析電子光譜儀(ESCA)針對薄膜氧化層進行分析,及探討觀察雷射氧化薄膜化學鍵結態。
根據研究結果顯示,XRD分析得知AlTiSiN/AlCrSiN薄膜及AlTiSiN、AlCrSiN薄膜皆屬於FCC晶體結構,因添加Si元素能有效抑制晶粒成長,使晶粒細化形成緻密的奈米結構,同時受到奈米多層膜的強化機制使AlTiSiN/AlCrSiN薄膜硬度得到提升(25.7 GPa)與低磨耗率(1.88x10-6 mm3/Nm)。透過毫秒光纖脈衝雷射經由100次循環雷射後薄膜,因表面生成氧化物如Al2O3、Cr2O3使得各薄膜的摩擦係數明顯降低。由SEM觀察薄膜單次雷射後表面形貌, AlTiSiN/AlCrSiN薄膜相較於AlTiSiN及AlCrSiN薄膜,並未出現因雷射表面熱應力所產生的熱裂紋,說明了多層薄膜耐熱衝擊性優於單層薄膜。根據FIB-SEM截面觀察經100次循環雷射後薄膜,得知適當成分配比之AlTiSiN/AlCrSiN薄膜因熱應力所產生的熱裂紋得到減緩,證實奈米多層結構薄膜能提升熱穩定性。

In this study, cathodic arc evaporation (CAE) technique was used in combination with aluminum titanium silicon (AlTiSi), aluminum chromium silicon (AlCrSi), and pure chromium (Cr) targets to deposit aluminum titanium silicon nitride (AlTiSiN) and aluminum chromium silicon nitride (AlCrSiN) films. Additionally, a multilayered nitride film of AlTiSiN/AlCrSiN was deposited using two targets, and the target currents for AlTiSiN and AlCrSiN were optimized to adjust the atomic ratio of film elements and enhance the high-temperature properties of the films. Laser thermal fatigue tests were conducted to investigate the microstructure and mechanical properties of the multilayered films.
Various instruments were employed to analyze the characteristics of the films. Field Emission Scanning Electron Microscope (FE-SEM) and Field Emission Transmission Electron Microscope (FETEM) were used to observe the cross-sectional microstructure of the films. Energy dispersive X-ray spectroscopy (EDX) was used for elemental composition analysis, and grazing incidence X-ray diffraction (GIXRD) was used to analyze the crystal structure and phases of the films. In terms of mechanical properties, nanoindentation and scratch tests were conducted to evaluate the adhesion between the films and substrates, and nanohardness, elastic modulus, and wear resistance of the films were measured using a nanoindentation instrument and a ball-on-disk wear tester. Finally, for the laser thermal fatigue tests of the films, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and electron spectroscopy for chemical analysis (ESCA) were utilized to analyze the oxide layers on the films and investigate the chemical bonding states of laser-oxidized films.


According to the research results, XRD analysis revealed that the AlTiSiN/AlCrSiN films and the AlTiSiN and AlCrSiN films all had the FCC crystal structure. The addition of Si elements effectively inhibited grain growth, resulting in refined grains and a dense nanostructure. At the same time, the AlTiSiN/AlCrSiN films benefit from the strengthening mechanism of the nanolayered structure, leading to increased hardness (25.7 GPa) and low wear rate (1.88x10-6 mm3/Nm). After subjecting the films to 100 cycles of laser irradiation with millisecond fiber laser pulses, the formation of surface oxides such as Al2O3 and Cr2O3 significantly reduced the friction coefficients of the Unlike the monolayered AlTiSiN and AlCrSiN films, observation of the surface morphology of the films after a single laser irradiation using SEM showed that the AlTiSiN/AlCrSiN films exhibited no thermal cracking caused by surface thermal. This indicates that the thermal stability of the multilayer films is superior to that of the monolayer films. Furthermore, FIB-SEM cross-section observation of the films after 100 cycles of laser irradiation, it was found that the AlTiSiN/AlCrSiN films exhibited reduced thermal cracking caused by thermal stress, confirming that the nanolayered structure in the thin films enhances thermal stability.
摘要....i
Abstract....ii
誌謝....iv
目錄....v
表目錄....vii
圖目錄....viii
第一章 緒論....1
1.1 前言....1
1.2 研究動機....2
第二章 文獻回顧 ....3
2.1 薄膜強化理論....3
2.1.1 奈米多層薄膜強化機制....3
2.1.2 固溶強化機制....4
2.1.3 晶粒細化強化機制....5
2.2 多元氮化物薄膜介紹....6
2.2.1 氮化鋁鉻....6
2.2.2 氮化鋁鈦....9
2.2.3 氮化鋁鉻矽....12
2.2.4 氮化鋁鈦矽 ....15
2.2.5 氮化鋁鈦鉻矽....18
2.3 雷射熱穩定性....20
2.3.1 不同雷射系統作用下之比較....20
2.3.2 毫秒脈衝雷射模擬熱疲勞....21
2.3.3 連續波雷射奈米多層薄膜之熱穩定性....25
第二章 實驗方法....28
3.1 實驗流程....28
3.2 薄膜設計與實驗方法....29
3.2.1 前處理及鍍膜步驟....29
3.2.2 單層AlTiSiN及AlCrSiN薄膜製程設計....31
3.2.3 多層AlTiCrSiN薄膜製程設計....33
3.3 雷射熱疲勞試驗....34
3.4 薄膜機械性質分析....37
3.4.1 洛氏硬度試驗機(Rockwell Hardness)....37
3.4.1 奈米壓痕試驗機(Nano-indentation)....38
3.4.2 刮痕試驗機(Scratch Test)....40
3.4.3 磨耗試驗機(Tribometer)....42
3.5 薄膜微結構與成分分析....43
3.5.1 超高解析熱電子型場發射掃描式電子顯微鏡(Ultra High Resolution Thermal Field Emission Scanning Electron Microscope, FESEM)....43
3.5.2 高階三束型聚焦離子束顯微鏡(Focused Ion and Electron Beam System)....45
3.5.3 場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscope, FETEM)....46
3.5.4 二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS)....48
3.5.5 化學分析電子能譜儀(Electron Spectroscope for Chemical Analysis, ESCA) ....49
3.5.6 X光繞射分析儀(X-Ray Diffractometer, XRD)....50
3.5.7 高解析電子微探儀 (Field Emission Electron Probe Microanalyzer, EPMA) ....52
第四章 結果與討論....53
4.1 薄膜常溫微結構分析....53
4.1.1 SEM微結構分析....53
4.1.2 EPMA表面元素成分定量分析....54
4.1.3 X光繞射分析....55
4.1.4 TEM微結構分析....58
4.2 薄膜機械性質分析....60
4.2.1 洛式壓痕分析....60
4.2.2 刮痕試驗分析....61
4.2.3 奈米壓痕分析....62
4.2.4 磨耗試驗分析....63
4.3 表面雷射後之薄膜微結構分析....65
4.3.1 SEM表面微結構分析....65
4.3.2 FIB-SEM截面微結構分析....67
4.3.3 EPMA表面元素成分定量分析....69
4.3.4 二次離子質譜儀縱深成分分析(SIMS)....70
4.3.5 XPS化學鍵結態與成分分析....74
4.3.6 TEM微結構分析....78
4.4 表面雷射後之薄膜機械性質分析....80
4.4.1 磨耗試驗分析....80
第五章 結論....85
5.1 薄膜微結構分析及表面性質....85
5.2 薄膜機械性質分析....86
未來展望....87
參考文獻....88
Extended Abstract....94


1.Long, S.G. and Y.C. Zhou, Thermal fatigue of particle reinforced metal–matrix composite induced by laser heating and mechanical load. Composites Science and Technology, 2005. 65(9): p. 1391-1400.
2.Fantini, V., L. Serri, and P. Bianchi. Laser thermal shock and fatigue testing system. in Lasers in Material Processing. 1997. SPIE.
3.Gan, Z., et al., A novel intelligent adaptive control of laser-based ground thermal test. Chinese Journal of Aeronautics, 2016. 29(4): p. 1018-1026.
4.Kokini, K., et al., Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surface and Coatings Technology, 2002. 154(2-3): p. 223-231.
5.Vincent, L., et al., Experimental facility for high cycle thermal fatigue tests using laser shocks. Procedia Engineering, 2013. 66: p. 669-675.
6.Zhang, Z., et al., Thermal fatigue behavior of Mg–9Al–Zn alloy with biomimetic strengthening units processed by laser surface remelting. Optics & Laser Technology, 2015. 70: p. 1-6.
7.Radziejewska, J., Application of a nanosecond laser pulse to evaluate dynamic hardness under ultra-high strain rate. Optics & Laser Technology, 2016. 78: p. 125-133.
8.Shuja, S. and B. Yilbas, Laser heating of a moving slab: Influence pulse intensity parameter on temperature and stress fields. Optics & Laser Technology, 2015. 70: p. 7-16.
9.Zhou, Z., et al., Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks. Optics & Laser Technology, 2015. 73: p. 173-178.
10.Musil, J., Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012. 207: p. 50-65.
11.Bagdasaryan, A.A., et al., A new type of (TiZrNbTaHf)N/MoN nanocomposite coating: Microstructure and properties depending on energy of incident ions. Composites Part B: Engineering, 2018. 146: p. 132-144.
12.Xu, X.M., et al., Effect of modulation structure on the growth behavior and mechanical properties of TiN/ZrN multilayers. Surface and Coatings Technology, 2007. 201(9): p. 5582-5586.
13.Pogrebnjak, A., et al., Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations. Materials Characterization, 2017. 134: p. 55-63.
14.Huang, S.-H., et al., Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings. Surface and Coatings Technology, 2011. 206(7): p. 1744-1752.
15.Stueber, M., et al., Concepts for the design of advanced nanoscale PVD multilayer protective thin films. Journal of Alloys and Compounds, 2009. 483(1): p. 321-333.
16.Callister, W.D.a.D.G.R., Materials Science and Engineering: An Introduction, 8th Edition. 2009.
17.Mo, J.L., et al., Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings. Surface and Coatings Technology, 2013. 215: p. 170-177.
18.Fan, Q., et al., Bias voltage optimization and cutting performance of AlCrN coatings deposited by a hybrid technology. Vacuum, 2022. 204: p. 111348.
19.Tong, X., P. Han, and S. Yang, Study of the friction behavior of AlCrN coated micro-textured surfaces. Tribology International, 2023. 177: p. 107985.
20.Singh, A., S. Ghosh, and S. Aravindan, Investigation of oxidation behaviour of AlCrN and AlTiN coatings deposited by arc enhanced HIPIMS technique. Applied Surface Science, 2020. 508: p. 144812.
21.Endrino, J.L., et al., Oxidation tuning in AlCrN coatings. Surface and Coatings Technology, 2007. 201(8): p. 4505-4511.
22.Kawate, M., A. Hashimoto, and T. Suzuki, Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films. Surface and Coatings Technology, 2003. 165: p. 163-167.
23.Chim, Y.C., et al., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009. 517(17): p. 4845-4849.
24.Chen, J., H. Li, and B.D. Beake, Load sensitivity in repetitive nano-impact testing of TiN and AlTiN coatings. Surface and Coatings Technology, 2016. 308: p. 289-297.
25.Mei, F., et al., Greater improvement of carbon and boron co-doping on the mechanical properties, wear resistance and cutting performance of AlTiN coating than that of doping alone. Surface and Coatings Technology, 2021. 406: p. 126738.
26.Huang, Y.Z., M. Stueber, and P. Hovsepian, The significance of carbon on the microstructure of TiAlNC coatings deposited by reactive magnetron sputtering. Applied Surface Science, 2006. 253(5): p. 2470-2473.
27.Rebholz, C., et al., The effect of boron additions on the tribological behaviour of TiN coatings produced by electron-beam evaporative PVD. Surface and Coatings Technology, 1999. 116-119: p. 648-653.
28.Zhang, H., et al., Improvement on the mechanical, tribological properties and cutting performance of AlTiN-based coatings by compositional and structural design. Surface and Coatings Technology, 2021. 422: p. 127503.
29.Hemmati, A., J. Paiva, and S.C. Veldhuis, Thermal stability and machining performance of arc evaporated Ti1-xAlxN hard PVD coatings with x=0.5 – 0.73 ratios using an integrative approach. Materialia, 2021. 17: p. 101132.
30.Wang, C.Y., et al., Wear and breakage of TiAlN- and TiSiN-coated carbide tools during high-speed milling of hardened steel. Wear, 2015. 336-337: p. 29-42.
31.He, N., et al., High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology. Tribology International, 2016. 98: p. 133-143.
32.Cai, F., et al., Improved adhesion and cutting performance of AlTiSiN coatings by tuning substrate bias voltage combined with Ar ion cleaning pre-treatment. Ceramics International, 2018. 44(15): p. 18894-18902.
33.Chang, Y.-Y. and H.-M. Lai, Wear behavior and cutting performance of CrAlSiN and TiAlSiN hard coatings on cemented carbide cutting tools for Ti alloys. Surface and Coatings Technology, 2014. 259: p. 152-158.
34.Wu, W., et al., Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools. Applied Surface Science, 2015. 351: p. 803-810.
35.Zhang, S., et al., Structural optimisation and synthesis of multilayers and nanocomposite AlCrTiSiN coatings for excellent machinability. Surface and Coatings Technology, 2015. 277: p. 23-29.
36.Wang, Q.M. and K.H. Kim, Microstructural control of Cr–Si–N films by a hybrid arc ion plating and magnetron sputtering process. Acta Materialia, 2009. 57(17): p. 4974-4987.
37.Raveh, A., et al., Thermal stability of nanostructured superhard coatings: A review. Surface and Coatings Technology, 2007. 201(13): p. 6136-6142.
38.Cai, F., et al., Gradient architecture of Si containing layer and improved cutting performance of AlCrSiN coated tools. Wear, 2019. 424-425: p. 193-202.
39.Polcar, T. and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surface and Coatings Technology, 2011. 206(6): p. 1244-1251.
40.Wu, Z., et al., Investigation on plastic deformation of arc-evaporated AlCrSiN and AlCrSiON nanocomposite films by indentation. Surface and Coatings Technology, 2022. 441: p. 128570.
41.Gao, Y., et al., Design of cycle structure on microstructure, mechanical properties and tribology behavior of AlCrN/AlCrSiN coatings. Ceramics International, 2022. 48(9): p. 12255-12270.
42.Chang, Y.-Y., et al., High temperature wettability of multicomponent CrAlSiN and TiAlSiN coatings by molten glass. Surface and Coatings Technology, 2013. 231: p. 24-28.
43.Chen, L., et al., Machining performance of Ti–Al–Si–N coated inserts. Surface and Coatings Technology, 2010. 205(2): p. 582-586.
44.Fuentes, G.G., et al., High temperature tribological characterisation of TiAlSiN coatings produced by cathodic arc evaporation. Surface and Coatings Technology, 2010. 205(5): p. 1368-1373.
45.Chang, Y.-Y. and M.-C. Cai, Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets. Surface and Coatings Technology, 2019. 374: p. 1120-1127.
46.Xiao, B., et al., Mechanical, oxidation, and cutting properties of AlCrN/AlTiSiN nano-multilayer coatings. Surface and Coatings Technology, 2022. 433: p. 128094.
47.Yarmolenko, S., et al., Structure of TiN/CrN Interface in Nanolaminate Coatings with Enhanced Mechanical and Tribological Properties. Microscopy and Microanalysis, 2019. 25(S2): p. 2278-2279.
48.Liu, Y., et al., Influences of modulation period on structure and properties of AlTiSiN/AlCrSiN nanocomposite multilayer coatings. Vacuum, 2021. 193: p. 110516.
49.Hovsepian, P.E., et al., Combined cathodic arc/unbalanced magnetron grown CrN/NbN superlattice coatings for applications in the cutlery industry. Surface and Coatings Technology, 2000. 133-134: p. 508-516.
50.Kim, G.S., et al., Synthesis of CrN/AlN superlattice coatings using closed-field unbalanced magnetron sputtering process. Surface and Coatings Technology, 2003. 171(1): p. 91-95.
51.Maharjan, N., et al., Comparative study of laser surface hardening of 50CrMo4 steel using continuous-wave laser and pulsed lasers with ms, ns, ps and fs pulse duration. Surface and Coatings Technology, 2019. 366: p. 311-320.
52.Pan, S., et al., Application of millisecond pulsed laser for thermal fatigue property evaluation. Optics & Laser Technology, 2018. 99: p. 382-391.
53.Bobzin, K., et al., Thermal stability of CrAlN/AlCrN nanolaminate coating deposited by hybrid dcMS/HPPMS after heat treatment with continuous-wave laser. Applied Surface Science, 2021. 569: p. 151024.
54.26443:2008, I. Fine ceramics (advanced ceramics, advanced technical ceramics) — Rockwell indentation test for evaluation of adhesion of ceramic coatings. 2008.
55.Saha, R. and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002. 50(1): p. 23-38.
56.Tsui, T.Y., et al., Nanoindentation and Nanoscratching of Hard Carbon Coatings for Magnetic Disks. MRS Online Proceedings Library (OPL), 1995. 383: p. 447.
57.Bartosik, M., et al., Thermally-induced formation of hexagonal AlN in AlCrN hard coatings on sapphire: Orientation relationships and residual stresses. Surface & Coatings Technology, 2010. 205: p. 1320-1323.
58.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measuremen. Applied Surface Science, 2014. 324.
59.Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of adhesion of ceramic coatings by scratch testing (ISO 20502:2005). 2016.
60.Lenz, B., et al., Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C:H:W coatings. Surface and Coatings Technology, 2020. 393: p. 125764.
61.李志偉. 刮痕試驗儀Scratch tester-明志科技大學電漿薄膜中心1館3樓光電檢測實驗室. 2021.
62.Jusman, Y., S.C. Ng, and N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. The Scientific World Journal, 2014. 2014.
63.Kwiecińska, B., S. Pusz, and B.J. Valentine, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology, 2019. 211: p. 103203.
64.∗, T.S., TOF-SIMS in cosmochemistry. 2001: p. 859-906.
65.Huang, D., et al., Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter. Analytica Chimica Acta, 2017. 989: p. 1-14.
66.Elton, L. and D.F. Jackson, X-ray diffraction and the Bragg law. American Journal of Physics, 1966. 34(11): p. 1036-1038.
67.Wang, Y., et al., Real-time synchrotron x-ray studies of low-and high-temperature nitridation of c-plane sapphire. Physical Review B, 2006. 74.
68.Llovet, X., Microscopy | Electron Probe Microanalysis, in Encyclopedia of Analytical Science (Third Edition), P. Worsfold, et al., Editors. 2019, Academic Press: Oxford. p. 30-38.
69.Llovet, X., et al., Electron probe microanalysis: A review of recent developments and applications in materials science and engineering. Progress in Materials Science, 2021. 116: p. 100673.
70.Çam, A.S., et al., Improvement of structural/tribological properties and milling performances of tungsten carbide cutting tools by bilayer TiAlN/TiSiN and monolayer AlCrSiN ceramic films. Ceramics International, 2022. 48(18): p. 26342-26350.
71.Chun, S.-Y., et al., NANOMETER-RANGED METALLIC COATINGS BY NOBLE PULSED CATHODIC ARC DEPOSITION, in Novel Materials Processing by Advanced Electromagnetic Energy Sources, S. Miyake, Editor. 2005, Elsevier Science Ltd: Oxford. p. 83-86.
72.Chen, L., et al., Improved thermal stability and oxidation resistance of Al-Ti-N coating by Si addition. Thin Solid Films, 2014. 556.
73.Liew, W.Y.H., et al., Thermal stability, mechanical properties, and tribological performance of TiAlXN coatings: understanding the effects of alloying additions. Journal of Materials Research and Technology, 2022. 17: p. 961-1012.
74.Sui, X., et al., Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool. Ceramics International, 2016. 42(6): p. 7524-7532.
75.Kuo, Y.-C., C.-J. Wang, and J.-W. Lee, The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content. Thin Solid Films, 2017. 638: p. 220-229.
76.Ma, Q., et al., Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS. Applied Surface Science, 2017. 392: p. 826-833.
77.Mayrhofer, P., et al., Microstructural Design of Hard Coatings. Progress in Materials Science, 2006. 51: p. 1032-1114.
78.Vepřek, S. and S. Reiprich, A concept for the design of novel superhard coatings. Thin Solid Films, 1995. 268(1): p. 64-71.
79.Ezura, H., et al., Micro-hardness, microstructures and thermal stability of (Ti,Cr,Al,Si)N films deposited by cathodic arc method. Vacuum, 2008. 82(5): p. 476-481.
80.鍾承熹, 氮化鋁鉻硼硬質薄膜之機械性質與磨潤性能. 2021: p. 89.
81.蔡孟蒓, 三元合金靶沉積氮化鋁鈦硼及氮化鋁鈦矽硬質薄膜之機械性質與磨潤性能. 2016: p. 104.
82.Chang, Y.-Y., et al., High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. Journal of Alloys and Compounds, 2008. 461(1): p. 336-341.
83.Samim, P.M., et al., Nanoscale architecture of ZrN/CrN coatings: microstructure, composition, mechanical properties and electrochemical behavior. Journal of Materials Research and Technology, 2021. 15: p. 542-560.
84.Zhu, L.-h., et al., Effect of 10% Si addition on cathodic arc evaporated TiAlSiN coatings. Transactions of Nonferrous Metals Society of China, 2016. 26(6): p. 1638-1646.
85.Ortiz-Membrado, L., et al., Improved adhesion of cathodic arc PVD AlCrSiN coating on ion-implanted WC-Co substrates. International Journal of Refractory Metals and Hard Materials, 2023. 113: p. 106187.
86.Liu, H., et al., Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, 2019. 358: p. 577-585.
87.Tillmann, W. and M. Dildrop, Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures. Surface and Coatings Technology, 2017. 321: p. 448-454.
88.Haršáni, M., et al., Adhesive-deformation relationships and mechanical properties of nc-AlCrN/a-SiNx hard coatings deposited at different bias voltages. Thin Solid Films, 2018. 650: p. 11-19.
89.Warcholinski, B., et al. Effect of Silicon Concentration on the Properties of Al-Cr-Si-N Coatings Deposited Using Cathodic Arc Evaporation. Materials, 2020. 13, DOI: 10.3390/ma13214717.
90.Mei, F., et al., Microstructure, mechanical, tribological, and oxidizing properties of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings with different modulated thicknesses. Ceramics International, 2022. 48(22): p. 32973-32985.
91.Zhou, H., et al., AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering. Vacuum, 2017. 136: p. 129-136.
92.Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1): p. 1-11.
93.Zhang, Q., et al., Tribological properties, oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating. Surface and Coatings Technology, 2018. 356: p. 1-10.
94.Jäger, N., et al., Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings. Journal of Materials Science & Technology, 2022. 100: p. 91-100.
95.Kim, M.J. and D.B. Lee. Oxidation of TiAlCrSiN Thin Films at 1000° C in Air. in Applied Mechanics and Materials. 2015. Trans Tech Publ.
96.Chang, Y.-Y. and C.-Y. Hsiao, High temperature oxidation resistance of multicomponent Cr–Ti–Al–Si–N coatings. Surface and Coatings Technology, 2009. 204(6): p. 992-996.
97.Chen, W., et al., Comparison of microstructures, mechanical and tribological properties of arc-deposited AlCrN, AlCrBN and CrBN coatings on Ti-6Al-4V alloy. Surface and Coatings Technology, 2020. 404: p. 126429.
98.Fukumoto, N., H. Ezura, and T. Suzuki, Synthesis and oxidation resistance of TiAlSiN and multilayer TiAlSiN/CrAlN coating. Surface and Coatings Technology, 2009. 204(6): p. 902-906.
99.Parlinska-Wojtan, M., et al., Characterization of thermally treated TiAlSiN coatings by TEM and nanoindentation. Surface and Coatings Technology, 2004. 188-189: p. 344-350.
100.Vennemann, A., et al., Oxidation resistance of titanium–aluminium–silicon nitride coatings. Surface and Coatings Technology, 2003. 174-175: p. 408-415.
101.Kim Y.-C., P.H.-H., Chun J.S., Lee W.-J., Thin Solid Films 237, 57. 1994.
102.Klimov V.D., V.A.A., Pronin I.S., Zh. Obshch. Khim. 61, 2166 1991.
103.Gonbeau D., G.C., Pfister-Guillouzo G., Levasseur A., Meunier G., and Dormoy R., Surf. Sci. 254, 81 1991.
104.Blasco T., C.M.A., Corma A., Perez-Pariente J., J. Am. Chem. Soc. 115, 11806. 1993.
105.Simon D., P.C., Bardolle J., J. Microsc. Spectrosc. Electron. 1, 175. (1976).
106.Agostinelli E., B.C., Fiorani D., Mattogno G., Nogues M., J. Phys. Chem. Solids 50, 269. (1989).
107.Kemnitz E., K.A., Grohmann I., Lippitz A., Unger W. E. S., J. Catal. 159, 270 (1996).
108.Valentine, B.J., J. Electrochem. Soc. 138, 2921 (1991). (1991).
109.Finster J., K.E.-D., Heeg J., Vacuum 41, 1586 (1990).
110.Craciun V., R.A.H., Vandenhoudt D.E.W., Best S.P., Hutton R.S., Andrei A., et al., Thin Solid Films 255, 290. (1995).
111.Sanjines R., T.H., Berger H., Gozzo F., Margaritondo G., and Levy F., J. Appl. Phys. 75, 2945 (1994).
112.Castillo R., K.B., Ruiz P., Delmon B., J. Catal. 161, 524. (1996).
113.Jafari, M., et al., Thermal degradation of TiN and TiAlN coatings during rapid laser treatment. Surface and Coatings Technology, 2021. 422: p. 127517.
114.Pei, Y.T., D. Galvan, and J.T.M. De Hosson, Nanostructure and properties of TiC/a-C:H composite coatings. Acta Materialia, 2005. 53(17): p. 4505-4521.
115.Harada, D., et al., Investigation of the structure and tribological properties of laser-irradiated hydrogenated amorphous carbon films. Diamond and Related Materials, 2023. 131: p. 109573.
116.Lim, H.P., et al., A systematic investigation of the tribological behaviour of oxides formed on AlSiTiN, CrAlTiN, and CrAlSiTiN coatings. Wear, 2023. 512-513: p. 204552.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊