跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石忠弘
研究生(外文):SHI, ZHONG-HONG
論文名稱:電漿輔助原子層沉積氧化銦薄膜於二氧化錫用於微型氣體感測器應用
論文名稱(外文):PE-ALD Deposition Of Indium Oxide On SnO2 For Miniature Gas Sensor Applications
指導教授:王聖璋蕭育仁蕭育仁引用關係
指導教授(外文):Wang, Sheng-ChangHsiao, Yu-Jen
口試委員:林春榮張守進
口試委員(外文):LIN, CHUN-RONGCHANG, SHOOU-JINN
口試日期:2023-06-30
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:59
中文關鍵詞:微機電氣體感測元件電漿輔助原子層沉積氧化銦/二氧化錫
外文關鍵詞:MEMS gas sensorPE-ALDindium oxide/tin oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
  二氧化錫在氣體感測元件上有著出色的感測性質,有許多研究於二氧化錫的奈米結構,為使感測性質更佳而加入其他材料;氧化銦與二氧化氮有極高的感測性質,本研究於二氧化錫上沉積氧化銦,讓二氧化氮感測元件有更佳的效果。
  本研究藉由射頻濺鍍技術與原子層沉積技術,成功沉積出二氧化錫與氧化銦的雙層薄膜於微機電氣體感測元件上,並研究其雙層薄膜之材料性質,包括橢圓偏光儀、低掠角繞射儀、掃描式電子顯微鏡、X光光學能譜儀、穿透式電子顯微鏡等儀器分析出厚度、成分分析、晶相結構、表面形貌、鍵結情況以及原子缺陷情形等。
  最後量測氧化銦/二氧化錫氣體感測元件的氣體性質,探討在不同溫度、厚度以及濕度的影響下對於二氧化氮氣體之靈敏度、能耗、選擇性質與氣敏機制,結果表明該感測元件在氧化銦(10 nm)/二氧化錫優於單層二氧化錫。
Tin dioxide has excellent sensing properties for gas sensors. There are many studies on the nanostructure of tin dioxide, adding other materials to improve the sensing performance; indium oxide has very high sensing properties for nitrogen dioxide. In this study, indium oxide was deposited on tin dioxide, so the nitrogen dioxide sensing element had a better effect.
In this study, a bilayer film of tin oxide and indium oxide was successfully deposited on a microelectromechanical(MEMS) gas sensor by radio frequency sputtering and atomic layer deposition technology, and the material properties of the bilayer film were studied, including ellipsometry, low grazing angle diffractometer , scanning electron microscope, X-ray spectrometer, transmission electron microscope and other instruments to analyze thickness, composition analysis, crystal phase structure, surface morphology, bonding, atomic defects, etc.
Finally, the gas characteristics of the indium oxide/tin oxide gas sensor were measured. The sensitivity, energy consumption, selectivity, and gas sensing mechanism of nitrogen dioxide gas under the influence of different temperatures, thicknesses, and humidity were discussed. The results show that the sensing device outperforms single-layer tin oxide in indium oxide (10 nm)/tin oxide.
摘要 I
Abstract II
誌謝 III
目次 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究背景、動機 2
1.3 研究方法 4
第二章 原理 5
2.1 各式氣體感測器之介紹 5
2.2 半導體式氣體感測器之基礎理論 6
2.3 吸附理論 9
2.4 感測材料 9
2.4.1 氧化銦(Indium oxide) 9
2.4.2 二氧化錫(Tin Oxide) 11
2.5 鍍膜技術原理 11
2.5.1 射頻磁控濺鍍原理 12
2.5.2 電漿輔助原子層沉積技術原理 13
第三章 元件設計與製程 15
3.1 製程設備 15
3.1.1 電漿輔助式化學氣相沉積(PE-CVD) 15
3.1.2 破片光阻旋轉塗佈機(Spin coater) 16
3.1.3 自動化光阻塗佈機 17
3.1.4 光罩對準曝光機(Mask aligner) 18
3.1.5 顯影系統(Track) 19
3.1.6 電子槍蒸鍍機(EB+RH Deposition System) 20
3.1.7 濕式蝕刻(Wet etching) 21
3.1.8 感應式耦合式電漿蝕刻系統(ICP) 22
3.1.9 多源濺鍍機(RF sputter) 23
3.1.10 電漿輔助原子層沉積系統(PE-ALD) 24
3.1.11 快速退火系統(RTA) 25
3.2 量測與分析設備 26
3.2.1 表面輪廓量測儀(Profile Meter) 26
3.2.2 橢圓偏光儀(Eillipsometer) 27
3.2.3 3D雷射顯微鏡(3D Laser Microscopy) 28
3.2.4 低掠角繞射儀(GIXRD) 29
3.2.5 鍍金機(Gold Sputter) 30
3.2.6 掃描式電子顯微鏡(SEM) 31
3.3 MEMS結構氣體感測元件結構設計與製程 32
3.3.1 氣體感測元件結構設計 32
3.4 氣體感測器量測系統 36
第四章 實驗結果與討論 37
4.1 MEMS結構感測器性能量測結果 37
4.1.1 MEMS結構感測器加熱測試 37
4.1.2 MEMS結構感測器穩定性測試 38
4.2 薄膜材料分析結果 39
4.2.1 氧化銦/二氧化錫之晶相分析 39
4.2.2 氧化銦/二氧化錫之SEM分析 40
4.2.3 氧化銦/二氧化錫之TEM分析 42
4.2.4 氧化銦/二氧化錫之XPS分析 44
4.3 感測器感測性質量測結果 46
4.3.1 不同厚度的氧化銦薄膜對於NO2感測性質之影響 46
4.3.2 不同加熱溫度對於NO2感測性質之影響 47
4.3.3 不同濕度對於NO2感測性質之影響 48
4.3.4 最佳條件下氧化銦氣體感測器之感測性質量測 49
4.4 氣敏機制 52
4.5 氣體感測器之比較 53
第五章 結論 54
參考文獻 55
1.Tainio, M., Jovanovic Andersen, Z., Nieuwenhuijsen, M. J., Hu, L., de Nazelle, A., An, R., Garcia, L. M., Goenka, S., Zapata-Diomedi, B., Bull, F., & Sá, T. H. D., Air pollution, physical activity and health: A mapping review of the evidence. Environment International, 147(105954), 2021.
2.Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. D., Cocker, D., & Polidori, A., Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216(116946), 2019.
3.Zhou, Q., Zeng, W., Chen, W., Xu, L., Kumar, R., & Umar, A., High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks, Sensors and Actuators B: Chemical, 298(126870), 2019.
4.Afzal, A., Cioffi, N., Sabbatini, L., & Torsi, L., NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sensors and Actuators B: Chemical, 171-172(25-42), 2012.
5.Zhou, Q., Chen, W., Xu, L., Kumar, R., Gui, Y., Zhao, Z., Tang, C., & Zhu, S., Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials, Ceramics International, 44(4), 4392-4399, 2018.
6.Sui, N., Zhang, P., Zhou, T., & Zhang, T., Selective ppb-level ozone gas sensor based on hierarchical branch-like In2O3 nanostructure. Sensors and Actuators B: Chemical, 336(129612), 2021.
7.Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors, 19, 3760, 2019.
8.Heintzelman, A.; Filippelli, G.; Lulla, V. Substantial Decreases in U.S. Cities’ Ground-Based NO2 Concentrations during COVID-19 from Reduced Transportation. Sustainability, 13, 9030, 2021.
9.Wendell W. Walters, Stanford R. Goodwin, and Greg Michalski, Nitrogen Stable Isotope Composition (δ15N) of Vehicle-Emitted NOx, Environ. Sci. Technol. 49 (4), 2278-2285, 2015.
10.環境環保署https://www.epa.gov.tw/Page/672FA2BDDEAA22C7/71fedbd8-9829-49e0-b02b-0addb5bd470a
11.Deng, Q., Lu, C., Li, Y., & Sundell, J., Exposure to outdoor air pollution during trimesters of pregnancy and childhood asthma, allergic rhinitis, and eczema. Environmental Research, 150(119-127), 2016.
12.Na, C. W., Kim, J., Kim, H., Woo, H., Gupta, A., Kim, H., & Lee, J. Highly selective and sensitive detection of NO2 using rGO-In2O3 structure on flexible substrate at low temperature. Sensors and Actuators B: Chemical, 255, 1671-1679, 2018.
13.勞工作業場所容許暴露標準第二條與勞工作業場所容許暴露標準第三條
14.Sudalma, S., Purwanto, P., & Santoso, L. W. The Effect of SO2 and NO2 from Transportation and Stationary Emissions Sources to SO42− and NO3− in Rain Water in Semarang. Procedia Environ. Sci. Eng. Manag, 23, 247-252, 2015.
15.Shams, S.R., Jahani, A., Kalantary, S. et al. Artificial intelligence accuracy assessment in NO2 concentration forecasting of metropolises air. Sci Rep 11, 1805, 2021.
16.Dinu LA, Buiculescu V, Baracu AM. Recent Progress on Nanomaterials for NO2 Surface Acoustic Wave Sensors. Nanomaterials. 12(12):2120, 2022.
17.Park, C.O., Fergus, J.W., Miura, N. et al. Solid-state electrochemical gas sensors. Ionics, 15, 261–284 (2009).
18.Bogue, R., Detecting gases with light: a review of optical gas sensor technologies, Sensor Review, 35 No. 2, pp. 133-140, 2015.
19.Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors, 3, 1-20, 2015.
20.C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 10(3), 2088–2106 (2010).
21.H. Ji, W. Zeng, Y. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review, Nanoscale, 11, 2664-22684 (2019).
22.B. Behera and S. Chandra, An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology, Sensors and Actuators B: Chemical, 229, 414-424 (2016).
23.Filipovic, L.; Selberherr, S., Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors. Sensors, 15, 7206-7227, 2015.
24.汪信、劉孝恒,奈米材料學,蒼海圖書出版公司,民100年。
25.Szmyt W., Nuñez C.G., Huber L.,Dransfeld C., Utke L., Atomic Layer Deposition on Porous Substrates: From General Formulation to Fibrous Substrates and Scaling Laws, Chem. Mater, 34, 1, 203–216, 2022.
26.Kaur, J., Kumar, R., & Bhatnagar, M., Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties. Sens. Actuaors B Cham., 126(2), 478-484, 2007.
27.Park, S., Jung, Y.W., Ko, G.M. Ko, Enhanced NO2 gas sensing performance of the In2O3-decorated SnO2 nanowire sensor. Appl. Phys. A, 127, 898, 2021.
28.Choi Y.-J., Hwang I.-S., Park J.-G. , Choi K. J. , Park J.-H., Lee J.-H., Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnology, 9(19), 2008.
29.Zhang, J., Wang, S., Wang, Y., Wang, Y., Zhu, B., Xia, H., Guo, X., Zhang, S., Huang, W., & Wu, S. NO2 sensing performance of SnO2 hollow-sphere sensor. Sensors and Actuators B: Chemical, 135(2), 610-617, 2009.
30.Sharma, A., Tomar, M., & Gupta, V., SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures. Sens. Actuaors B Cham., 156(2), 743-752, 2011.
31.Sharma, A., Tomar, M., & Gupta, V., Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters. Sensors and Actuators B: Chemical, 181(735-742), 2013.
32.Sharma, B., Sharma, A., Joshi, M., Myung, J.-h., Sputtered SnO2/ZnO Heterostructures for Improved NO2 Gas Sensing Properties. Chemosensors, 8(67), 2020.
33.Alhuthali, A., El-Nahass, M., Atta, A., Abd El-Raheem, M., Elsabawy, K. M., & Hassanien, A., Study of topological morphology and optical properties of SnO2 thin films deposited by RF sputtering technique. J. Lumin., 158, 165-171, 2015.
34.Kaur, M., Dadhich, B. K., Singh, R., Bagwaiya, T., Bhattacharya, S., Debnath, A., Muthe, K., & Gadkari, S., RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature. Sens. Actuators B Chem., 242, 389-403, 2017.
35.Goerke, S., Ziegler, M., Ihring, A., Dellith, J., Undisz, A., Diegel, M., Anders, S., Huebner, U., Rettenmayr, M., & Meyer, H., Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H2/N2 plasma. Applied Surface Science, 338, 35-41, 2015.
36.Mizutani F., Higashi S., Inoue M., Nabatame T., Atomic layer deposition of stoichiometric In2O3 films using liquid ethylcyclopentadienyl indium and combinations of H2O and O2 plasma, AIP Advances, 9, 045019, 2019.
37.Mahmoodinezhad A., Morales C., Naumann F., et al., Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma, J. Vac. Sci. Technol. A, 39, 062406, 2021.
38.Arora, Ajay Kumar, Mahajan, Sandeep, Verma, Maya and Haridas, Divya., Study of structural and morphological properties of RF-sputtered SnO2 thin films and their effect on gas-sensing phenomenon, Int. J. Intell. Syst., 16, 1, 2023.
39.Fang, D., He, F., Xie, J. et al. Calibration of Binding Energy Positions with C1s for XPS Results. Adv. Mater. 35, 711–718, 2020.
40.Du, H., Yao, P., Sun, Y., Wang, J., Wang, H., & Yu, N., Electrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity. Sensors, 17(8), 1822, 2017.
41.Yan, S., Li, Z., Li, H. et al., Ultra-sensitive room-temperature H2S sensor using Ag–In2O3 nanorod composites. J Mater Sci, 53, 16331–16344, 2018.
42.T. J. Hsueh, S. S. Wu, Highly sensitive Co3O4 nanoparticles/MEMS NO2 gas sensor with the adsorption of the Au nanoparticles. Sens. Actuators B Chem. 329, 129201 (2021).
43.M. I. A. Asri, M. N. Hasan, M. R. A. Fuaad, Y. M. Yunos and M. S. M. Ali, MEMS Gas Sensors: A Review, IEEE Sensors Journal, 21(17), 18381-18397, (2021).
44.Q.A. Drmosh, Z.H. Yamani, et al. Gold nanoparticles incorporated SnO2 thin film: highly responsive and selective detection of NO2 at room temperature, Materials Letters, 214, 283-286 (2018).
45.Nam, B., Ko, TK., Hyun, SK. et al. NO2 sensing properties of WO3-decorated In2O3 nanorods and In2O3-decorated WO3 nanorods. Nano Convergence, 6, 40 (2019).
46.Jian, LY., Lee, HY. & Lee, CT., Surface Morphology-Dependent Sensitivity of Thin-Film-Structured Indium Oxide-Based NO2 Gas Sensors. J. Electron. Mater. 48, 2391–2397 (2019).
47.M. Ibrahim, Isam & Salim, M & Ali, Iftikhar., IMPROVING SENSITIVITY OF In2O3 AGAINST NO2 TOXIC GAS BY LOADING TIN OXIDE. Digest Journal of Nanomaterials and Biostructures. 14. 387-394, (2019).
48.M. A.r Kadhim, A. A. Ramadhan, et al. , Effect of Mixing Ratio of (SnO2)1-x(In2O3)x Thin Film on Gas Sensitivity, Karbala International Journal of Modern Science, 6(1), 12, (2020).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top