|
1.Tainio, M., Jovanovic Andersen, Z., Nieuwenhuijsen, M. J., Hu, L., de Nazelle, A., An, R., Garcia, L. M., Goenka, S., Zapata-Diomedi, B., Bull, F., & Sá, T. H. D., Air pollution, physical activity and health: A mapping review of the evidence. Environment International, 147(105954), 2021. 2.Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. D., Cocker, D., & Polidori, A., Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216(116946), 2019. 3.Zhou, Q., Zeng, W., Chen, W., Xu, L., Kumar, R., & Umar, A., High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks, Sensors and Actuators B: Chemical, 298(126870), 2019. 4.Afzal, A., Cioffi, N., Sabbatini, L., & Torsi, L., NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sensors and Actuators B: Chemical, 171-172(25-42), 2012. 5.Zhou, Q., Chen, W., Xu, L., Kumar, R., Gui, Y., Zhao, Z., Tang, C., & Zhu, S., Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials, Ceramics International, 44(4), 4392-4399, 2018. 6.Sui, N., Zhang, P., Zhou, T., & Zhang, T., Selective ppb-level ozone gas sensor based on hierarchical branch-like In2O3 nanostructure. Sensors and Actuators B: Chemical, 336(129612), 2021. 7.Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors, 19, 3760, 2019. 8.Heintzelman, A.; Filippelli, G.; Lulla, V. Substantial Decreases in U.S. Cities’ Ground-Based NO2 Concentrations during COVID-19 from Reduced Transportation. Sustainability, 13, 9030, 2021. 9.Wendell W. Walters, Stanford R. Goodwin, and Greg Michalski, Nitrogen Stable Isotope Composition (δ15N) of Vehicle-Emitted NOx, Environ. Sci. Technol. 49 (4), 2278-2285, 2015. 10.環境環保署https://www.epa.gov.tw/Page/672FA2BDDEAA22C7/71fedbd8-9829-49e0-b02b-0addb5bd470a 11.Deng, Q., Lu, C., Li, Y., & Sundell, J., Exposure to outdoor air pollution during trimesters of pregnancy and childhood asthma, allergic rhinitis, and eczema. Environmental Research, 150(119-127), 2016. 12.Na, C. W., Kim, J., Kim, H., Woo, H., Gupta, A., Kim, H., & Lee, J. Highly selective and sensitive detection of NO2 using rGO-In2O3 structure on flexible substrate at low temperature. Sensors and Actuators B: Chemical, 255, 1671-1679, 2018. 13.勞工作業場所容許暴露標準第二條與勞工作業場所容許暴露標準第三條 14.Sudalma, S., Purwanto, P., & Santoso, L. W. The Effect of SO2 and NO2 from Transportation and Stationary Emissions Sources to SO42− and NO3− in Rain Water in Semarang. Procedia Environ. Sci. Eng. Manag, 23, 247-252, 2015. 15.Shams, S.R., Jahani, A., Kalantary, S. et al. Artificial intelligence accuracy assessment in NO2 concentration forecasting of metropolises air. Sci Rep 11, 1805, 2021. 16.Dinu LA, Buiculescu V, Baracu AM. Recent Progress on Nanomaterials for NO2 Surface Acoustic Wave Sensors. Nanomaterials. 12(12):2120, 2022. 17.Park, C.O., Fergus, J.W., Miura, N. et al. Solid-state electrochemical gas sensors. Ionics, 15, 261–284 (2009). 18.Bogue, R., Detecting gases with light: a review of optical gas sensor technologies, Sensor Review, 35 No. 2, pp. 133-140, 2015. 19.Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors, 3, 1-20, 2015. 20.C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 10(3), 2088–2106 (2010). 21.H. Ji, W. Zeng, Y. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review, Nanoscale, 11, 2664-22684 (2019). 22.B. Behera and S. Chandra, An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology, Sensors and Actuators B: Chemical, 229, 414-424 (2016). 23.Filipovic, L.; Selberherr, S., Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors. Sensors, 15, 7206-7227, 2015. 24.汪信、劉孝恒,奈米材料學,蒼海圖書出版公司,民100年。 25.Szmyt W., Nuñez C.G., Huber L.,Dransfeld C., Utke L., Atomic Layer Deposition on Porous Substrates: From General Formulation to Fibrous Substrates and Scaling Laws, Chem. Mater, 34, 1, 203–216, 2022. 26.Kaur, J., Kumar, R., & Bhatnagar, M., Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties. Sens. Actuaors B Cham., 126(2), 478-484, 2007. 27.Park, S., Jung, Y.W., Ko, G.M. Ko, Enhanced NO2 gas sensing performance of the In2O3-decorated SnO2 nanowire sensor. Appl. Phys. A, 127, 898, 2021. 28.Choi Y.-J., Hwang I.-S., Park J.-G. , Choi K. J. , Park J.-H., Lee J.-H., Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnology, 9(19), 2008. 29.Zhang, J., Wang, S., Wang, Y., Wang, Y., Zhu, B., Xia, H., Guo, X., Zhang, S., Huang, W., & Wu, S. NO2 sensing performance of SnO2 hollow-sphere sensor. Sensors and Actuators B: Chemical, 135(2), 610-617, 2009. 30.Sharma, A., Tomar, M., & Gupta, V., SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures. Sens. Actuaors B Cham., 156(2), 743-752, 2011. 31.Sharma, A., Tomar, M., & Gupta, V., Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters. Sensors and Actuators B: Chemical, 181(735-742), 2013. 32.Sharma, B., Sharma, A., Joshi, M., Myung, J.-h., Sputtered SnO2/ZnO Heterostructures for Improved NO2 Gas Sensing Properties. Chemosensors, 8(67), 2020. 33.Alhuthali, A., El-Nahass, M., Atta, A., Abd El-Raheem, M., Elsabawy, K. M., & Hassanien, A., Study of topological morphology and optical properties of SnO2 thin films deposited by RF sputtering technique. J. Lumin., 158, 165-171, 2015. 34.Kaur, M., Dadhich, B. K., Singh, R., Bagwaiya, T., Bhattacharya, S., Debnath, A., Muthe, K., & Gadkari, S., RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature. Sens. Actuators B Chem., 242, 389-403, 2017. 35.Goerke, S., Ziegler, M., Ihring, A., Dellith, J., Undisz, A., Diegel, M., Anders, S., Huebner, U., Rettenmayr, M., & Meyer, H., Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H2/N2 plasma. Applied Surface Science, 338, 35-41, 2015. 36.Mizutani F., Higashi S., Inoue M., Nabatame T., Atomic layer deposition of stoichiometric In2O3 films using liquid ethylcyclopentadienyl indium and combinations of H2O and O2 plasma, AIP Advances, 9, 045019, 2019. 37.Mahmoodinezhad A., Morales C., Naumann F., et al., Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma, J. Vac. Sci. Technol. A, 39, 062406, 2021. 38.Arora, Ajay Kumar, Mahajan, Sandeep, Verma, Maya and Haridas, Divya., Study of structural and morphological properties of RF-sputtered SnO2 thin films and their effect on gas-sensing phenomenon, Int. J. Intell. Syst., 16, 1, 2023. 39.Fang, D., He, F., Xie, J. et al. Calibration of Binding Energy Positions with C1s for XPS Results. Adv. Mater. 35, 711–718, 2020. 40.Du, H., Yao, P., Sun, Y., Wang, J., Wang, H., & Yu, N., Electrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity. Sensors, 17(8), 1822, 2017. 41.Yan, S., Li, Z., Li, H. et al., Ultra-sensitive room-temperature H2S sensor using Ag–In2O3 nanorod composites. J Mater Sci, 53, 16331–16344, 2018. 42.T. J. Hsueh, S. S. Wu, Highly sensitive Co3O4 nanoparticles/MEMS NO2 gas sensor with the adsorption of the Au nanoparticles. Sens. Actuators B Chem. 329, 129201 (2021). 43.M. I. A. Asri, M. N. Hasan, M. R. A. Fuaad, Y. M. Yunos and M. S. M. Ali, MEMS Gas Sensors: A Review, IEEE Sensors Journal, 21(17), 18381-18397, (2021). 44.Q.A. Drmosh, Z.H. Yamani, et al. Gold nanoparticles incorporated SnO2 thin film: highly responsive and selective detection of NO2 at room temperature, Materials Letters, 214, 283-286 (2018). 45.Nam, B., Ko, TK., Hyun, SK. et al. NO2 sensing properties of WO3-decorated In2O3 nanorods and In2O3-decorated WO3 nanorods. Nano Convergence, 6, 40 (2019). 46.Jian, LY., Lee, HY. & Lee, CT., Surface Morphology-Dependent Sensitivity of Thin-Film-Structured Indium Oxide-Based NO2 Gas Sensors. J. Electron. Mater. 48, 2391–2397 (2019). 47.M. Ibrahim, Isam & Salim, M & Ali, Iftikhar., IMPROVING SENSITIVITY OF In2O3 AGAINST NO2 TOXIC GAS BY LOADING TIN OXIDE. Digest Journal of Nanomaterials and Biostructures. 14. 387-394, (2019). 48.M. A.r Kadhim, A. A. Ramadhan, et al. , Effect of Mixing Ratio of (SnO2)1-x(In2O3)x Thin Film on Gas Sensitivity, Karbala International Journal of Modern Science, 6(1), 12, (2020).
|