1.Neu, H.C., The crisis in antibiotic resistance. Science, 1992. 257(5073): p. 1064-1073.
2.Frieri, M., K. Kumar, and A. Boutin, Antibiotic resistance. Journal of infection and public health, 2017. 10(4): p. 369-378.
3.Tacconelli, E., et al., Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet infectious diseases, 2018. 18(3): p. 318-327.
4.Ventola, C.L., The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics, 2015. 40(4): p. 277.
5.Control, C.f.D. and Prevention, Antibiotic resistance threats in the United States, 2019. 2019: US Department of Health and Human Services, Centres for Disease Control and ….
6.Willyard, C., The drug-resistant bacteria that pose the greatest health threats. Nature, 2017. 543(7643): p. 15-15.
7.Sionov, R.V. and D. Steinberg, Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms, 2022. 10(6): p. 1239.
8.Darby, E.M., et al., Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology, 2022.
9.Balaban, N.Q., et al., Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019. 17(7): p. 441-448.
10.Zorraquín-Peña, I., et al., Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms, 2020. 8(1): p. 132.
11.Möhler, J.S., et al., Silver bullets: A new lustre on an old antimicrobial agent. Biotechnology advances, 2018. 36(5): p. 1391-1411.
12.Nathanael, K., et al., Computational modelling and microfluidics as emerging approaches to synthesis of silver nanoparticles – A review. Chemical Engineering Journal, 2022. 436: p. 135178.
13.Keat, C.L., et al., Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing, 2015. 2(1).
14.Lee, N.-Y., W.-C. Ko, and P.-R. Hsueh, Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in pharmacology, 2019. 10: p. 1153.
15.Lu, J., et al., Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water research, 2020. 169: p. 115229.
16.Chakraborty, N., et al., Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. Journal of Nanobiotechnology, 2022. 20(1).
17.León-Buitimea, A., et al., The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Frontiers in microbiology, 2020: p. 1669.
18.Mijnendonckx, K., et al., Antimicrobial silver: uses, toxicity and potential for resistance. Biometals, 2013. 26: p. 609-621.
19.Massarsky, A., V.L. Trudeau, and T.W. Moon, Predicting the environmental impact of nanosilver. Environmental toxicology and pharmacology, 2014. 38(3): p. 861-873.
20.Yonathan, K., et al., The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. Environmental Pollution, 2022. 293: p. 118506.
21.Rajkovic, S., et al., Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. Waste Management, 2020. 113: p. 118-131.
22.Allen, H.K., et al., Call of the wild: antibiotic resistance genes in natural environments. Nature reviews microbiology, 2010. 8(4): p. 251-259.
23.Chen, Q.-L., et al., Does nano silver promote the selection of antibiotic resistance genes in soil and plant? Environment international, 2019. 128: p. 399-406.
24.Qi, L., et al., Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes. Environmental Science: Nano, 2019. 6(2): p. 456-466.
25.Lehutso, R.F. and M. Thwala, Assessment of Nanopollution from Commercial Products in Water Environments. Nanomaterials, 2021. 11(10): p. 2537.
26.Amaro, F., et al., Metallic Nanoparticles—Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? Microorganisms, 2021. 9(2): p. 364.
27.Mba, I.E. and E.I. Nweze, Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World Journal of Microbiology and Biotechnology, 2021. 37(6).
28.Randall, C.P., et al., Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. Journal of Antimicrobial Chemotherapy, 2015. 70(4): p. 1037-1046.
29.Wu, K., et al., Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Antimicrobial Agents and Chemotherapy, 2022. 66(10): p. e00628-22.
30.Mann, R., et al., Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance. Journal of Nanobiotechnology, 2021. 19(1).
31.McNeilly, O., et al., Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Frontiers in Microbiology, 2021. 12: p. 652863.
32.Panáček, A., et al., Bacterial resistance to silver nanoparticles and how to overcome it. Nature nanotechnology, 2018. 13(1): p. 65-71.
33.Dong, F., et al., Experimental evolution of Pseudomonas putida under silver ion versus nanoparticle stress. Environmental Microbiology, 2022. 24(2): p. 905-918.
34.Huan, Y., et al., Antimicrobial peptides: classification, design, application and research progress in multiple fields. Frontiers in microbiology, 2020: p. 2559.
35.Boparai, J.K. and P.K. Sharma, Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein and peptide letters, 2020. 27(1): p. 4-16.
36.Mangoni, M.L., A.M. McDermott, and M. Zasloff, Antimicrobial peptides and wound healing: biological and therapeutic considerations. Experimental Dermatology, 2016. 25(3): p. 167-173.
37.Hale, J.D. and R.E. Hancock, Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert review of anti-infective therapy, 2007. 5(6): p. 951-959.
38.Mardirossian, M., et al., The Dolphin Proline-Rich Antimicrobial Peptide Tur1A Inhibits Protein Synthesis by Targeting the Bacterial Ribosome. Cell Chemical Biology, 2018. 25(5): p. 530-539.e7.
39.Li, L., et al., Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Applied microbiology and biotechnology, 2016. 100: p. 3245-3253.
40.Duplantier, A.J. and M.L. van Hoek, The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Frontiers in immunology, 2013. 4: p. 143.
41.Steinstraesser, L., et al., Host Defense Peptides in Wound Healing. Molecular Medicine, 2008. 14(7-8): p. 528-537.
42.Tamma, P.D., S.E. Cosgrove, and L.L. Maragakis, Combination therapy for treatment of infections with gram-negative bacteria. Clinical microbiology reviews, 2012. 25(3): p. 450-470.
43.Akbari, R., et al., Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of acinetobacter baumannii and pseudomonas aeruginosa. Microbial Drug Resistance, 2019. 25(2): p. 193-202.
44.Masimen, M.A.A., et al., Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics, 2022. 11(7): p. 951.
45.Chen, X., et al., Agarose oligosaccharide-silver nanoparticle-antimicrobial peptide-composite for wound dressing. Carbohydrate polymers, 2021. 269: p. 118258.
46.Xu, J., et al., Enhanced Antibacterial and Anti-Biofilm Activities of Antimicrobial Peptides Modified Silver Nanoparticles. International Journal of Nanomedicine, 2021. Volume 16: p. 4831-4846.
47.Darwish, R.M. and A.H. Salama, Study the Effect of Conjugate Novel Ultra-Short Antimicrobial Peptide with Silver Nanoparticles against Methicillin Resistant S. aureus and ESBL E. coli. Antibiotics, 2022. 11(8): p. 1024.
48.Benn, T., et al., The Release of Nanosilver from Consumer Products Used in the Home. Journal of Environmental Quality, 2010. 39(6): p. 1875-1882.
49.黃筱琪, 研發新型抗菌劑:利用魚腥草萃取物合成之銀奈米粒子的殺菌功效和特性分析, in 醫學檢驗生物技術學系醫學生物技術碩士班. 2022, 慈濟大學: 花蓮縣. p. 82.50.Chomczynski, P. and N. Sacchi, The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nature protocols, 2006. 1(2): p. 581-585.
51.Roth, R., H.D. Madhani, and J.F. Garcia, Total RNA Isolation and Quantification of Specific RNAs in Fission Yeast. 2018, Springer New York. p. 63-72.
52.Marmur, J., A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of molecular biology, 1961. 3(2): p. 208-IN1.
53.Bellio, P., et al., New and simplified method for drug combination studies by checkerboard assay. MethodsX, 2021. 8: p. 101543.
54.Blaskovich, M.A.T., et al., The antimicrobial potential of cannabidiol. Communications Biology, 2021. 4(1).
55.Li, W., et al., Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy. RSC Advances, 2020. 10(64): p. 38746-38754.
56.Huang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009. 4(1): p. 44-57.
57.Bindea, G., et al., ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009. 25(8): p. 1091-1093.
58.Van Dongen, S., Graph clustering via a discrete uncoupling process. SIAM Journal on Matrix Analysis and Applications, 2008. 30(1): p. 121-141.
59.Puértolas-Balint, F., et al., Mutations that increase expression of the EmrAB-TolC efflux pump confer increased resistance to nitroxoline in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2020. 75(2): p. 300-308.
60.Gao, J., et al., One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2020. 186: p. 110704.
61.Stabryla, L.M., et al., Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nature Nanotechnology, 2021. 16(9): p. 996-1003.
62.Alhajjar, R.K., K.M. Roche, and S.M. Techtmann, Comparative Analysis of the Mechanism of Resistance to Silver Nanoparticles and the Biocide 2, 2-Dibromo-3-Nitrilopropionamide. Antimicrobial Agents and Chemotherapy, 2022: p. e02031-21.
63.Ewunkem, A.J., et al., Experimental Evolution of Magnetite Nanoparticle Resistance in Escherichia coli. Nanomaterials, 2021. 11(3): p. 790.
64.Yan, X., et al., Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics, 2018. 10(4): p. 557-564.
65.Hirai, T., et al., Expression of multiple cbb 3 cytochrome c oxidase isoforms by combinations of multiple isosubunits in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 2016. 113(45): p. 12815-12819.
66.Franke, S., et al., Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Journal of bacteriology, 2003. 185(13): p. 3804-3812.
67.Fortney, K.R., et al., CpxA Phosphatase Inhibitor Activates CpxRA and Is a Potential Treatment for Uropathogenic Escherichia coli in a Murine Model of Infection. Microbiology Spectrum, 2022. 10(2): p. e02430-21.
68.Li, H., et al., The CpxA/CpxR two-component system affects biofilm formation and virulence in Actinobacillus pleuropneumoniae. Frontiers in cellular and infection microbiology, 2018. 8: p. 72.
69.Gudipaty, S.A., et al., Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiology Letters, 2012. 330(1): p. 30-37.
70.Pal, I., et al., A Peptide-Nanoparticle System with Improved Efficacy against Multidrug Resistant Bacteria. Scientific Reports, 2019. 9(1).
71.Brahmkhatri, V.P., et al., An ultrastable conjugate of silver nanoparticles and protein formed through weak interactions. Nanoscale, 2015. 7(30): p. 12921-12931.
72.E-08, A., Standard test method for analysis of hemolytic properties of nanoparticles. 2013, ASTM International West Conshohocken, PA.
73.Yedgar, S., G. Barshtein, and A. Gural, Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. Micromachines, 2022. 13(12): p. 2091.