跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張展逢
研究生(外文):ZHANG,ZHAN-FENG
論文名稱:燃煤火力電廠碳捕獲先導型工場之節能效率評估及驗證
論文名稱(外文):Energy-Saving Performance Evaluation and Validation for Carbon Capture by Pilot Plant Studies at a Coal-Fired Power Station
指導教授:劉佳霖
指導教授(外文):LIU,JIA-LIN
口試委員:康嘉麟游承修
口試委員(外文):KANG, JIA-LINYU,CHENG-HSIU
口試日期:2023-07-03
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:178
中文關鍵詞:燃燒後碳捕獲先導型工場實驗節能製程設計吸收劑改良質傳限制模型
外文關鍵詞:Post-Combustion Carbon CapturePilot Plant TestsEnergy-Saving Process ModificationsSolvent ImprovementsRate-Based Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
2050年將推動淨零排放,因此本研究利用醇胺類吸收劑,在燃煤火力電廠,進行燃燒後捕獲(Post-Combustion Capture,PCC)的解決方法測試,並將實驗結果以Aspen Plus建立質傳限制模型(Rate-Based Model)。實驗總共有三座塔分別為:預處理塔、吸收塔及汽提塔,塔內徑為89 mm,填充料高度分別是0.97 m、1.14 m及0.94 m,填充料使用4 mm的狄克遜環(Dixon Ring)。預處理塔去除煙道氣中98%的硫氧化物(SOx),處理後的煙道氣,導入吸收塔與汽提塔,進行封閉式連續循環系統,目標為捕獲煙道氣中85%的二氧化碳(CO2)。使用30 wt%乙醇胺(Monoethanolamine,MEA)當作標準吸收劑,調整貧液流量,以液氣比(L/G,kg/kg)在2.5至6.0之間變化,建立再生能耗基礎線,尋找最低再生能耗(GJ/t-CO2)及最佳液氣比操作條件。
在標準製程中加入節能設備,包括:吸收塔夾套導入冷卻水、富液經過熱泵加熱,及整合兩者是否有節能效果。研究MEA和二胺基二甲基丙醇(2-amino-2-methyl-1-propanol,AMP)複合吸收劑的再生能耗,AMP屬於空間障礙醇胺,能提高單位溶劑捕獲CO2的能力。此外,探討汽提塔在高壓下能否有節能成效,使用不同溶劑和製程改善有機會緩解PCC的能耗負擔。最後將實驗結果,建立Aspen Plus質傳限制模型,驗證模型的正確性。未來工作將利用Aspen Plus物理模型設計節能碳捕獲製程,例如:冷富液分流製程、吸收塔級間冷卻製程,以及兩者的整合製程。

This study conducted pilot plant tests at a coal-fired power plant for evaluating post-combustion capture (PCC) method by amine-based solutions. The experimental results were used to develop a rate-based model of Aspen Plus simulator. The pilot plant consists of three columns those are a pretreatment column, an absorber, and a stripper. The diameters of columns are 89 mm, and the packing heights are 0.97 m, 1.14 m, and 0.94 m, respectively. The Dixon rings of 4 mm are randomly packed in the columns. The pretreatment column removed 98% of SOx from the flue gas, after which was then directed to the absorber and stripper in a closed-loop continuous circulation system. The removal rate of CO2 is 85% of the flue gas by 30 wt% monoethanolamines (MEA) solvent. The baseline of the regeneration energy is established by adjust the liquid-to-gas ratio (L/G, kg/kg) between 2.5 to 6.0. The lowest regeneration energy (GJ/t-CO2) can be found by an optimal L/G operating condition.
Energy-saving modifications were configured on the standard process, for example: cooling water in the jacket of the absorber, heating rich solvent through heat pump, and the integration of both configurations. In addition, the regeneration energy of a composite absorbent, MEA and 2-amino-2-methyl-1-propanol (AMP), is investigated. AMP is a spatially hindered amine-based that can enhance the saturated solvability of CO2. The energy-saving effect of the high-pressure stripper is also investigated. In this study, the energy reductions of PCC are validated by solvent improvements and process modifications in the pilot test. The experimental results are used to develop an Aspen Plus rate-based model for further investigating the energy-saving opportunities for PCC, such as, cold-split bypass, absorber intercooling, and the integration of both configurations in the future work.

摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 報告架構 3
第二章 文獻回顧 4
2.1 捕獲二氧化碳技術 4
2.1.1 富氧燃燒碳捕獲 4
2.1.2 燃燒前碳捕獲 4
2.1.3 燃燒後碳捕獲 4
2.2 吸收劑的種類及特性 5
2.3 MEA捕獲二氧化碳 6
2.4 AMP捕獲二氧化碳 8
2.5 捕獲二氧化碳節能製程 9
第三章 實驗方法與模擬設計 11
3.1 實驗方法 11
3.1.1 實驗流程 11
3.1.2 開環測試 18
3.1.3 滴定方法及驗證 21
3.2 模擬建模 28
3.2.1 熱力學模型 28
3.2.2 化學反應 29
3.2.2.1 化學平衡式 29
3.2.2.2 化學動力式 30
3.2.3 平衡模型(Equilibrium Model) 31
3.2.4 質傳限制模型(Rate-Based Model) 33
第四章 結果與討論 38
4.1 標準吸收劑的節能成效 38
4.1.1 標準實驗 38
4.1.2 冷卻水實驗 39
4.1.3 熱泵實驗 41
4.1.4 整合冷卻水與熱泵實驗 45
4.2 複合吸收劑的節能成效 47
4.2.1 標準常壓製程 47
4.2.2 標準高壓製程 49
4.3 模擬實驗結果 52
4.3.1 模擬標準吸收劑 52
4.3.2 模擬複合吸收劑 57
第五章 結論與未來工作 63
5.1 結論 63
5.2 未來工作 64
參考文獻 65
附錄 71
1. 30 wt% MEA 71
2. 15 wt% MEA + 22 wt% AMP-1 atm 135
3. 15 wt% MEA + 22 wt% AMP-2 atm 153

[1]IEA, "Key World Energy Statistics 2021," 2021, doi: 10.1787/22202811.
[2]中華民國經濟部能源局, "110年度我國燃料燃燒二氧化碳排放統計與分析," 2022.
[3]M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, "Post-combustion CO2 capture with chemical absorption: A state-of-the-art review," Chem Eng Res Des, vol. 89, no. 9, pp. 1609-1624, Sep 2011, doi: 10.1016/j.cherd.2010.11.005.
[4]A. Mukherjee, J. A. Okolie, A. Abdelrasoul, C. Niu, and A. K. Dalai, "Review of post-combustion carbon dioxide capture technologies using activated carbon," J Environ Sci, vol. 83, pp. 46-63, Sep 2019, doi: 10.1016/j.jes.2019.03.014.
[5]N. Dave, T. Do, G. Puxty, R. Rowland, P. H. M. Feron, and M. I. Attalla, "CO2 capture by aqueous amines and aqueous ammonia–A Comparison," Energy Procedia, vol. 1, no. 1, pp. 949-954, 2009, doi: 10.1016/j.egypro.2009.01.126.
[6]K. Han, C. K. Ahn, M. S. Lee, C. H. Rhee, J. Y. Kim, and H. D. Chun, "Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization," International Journal of Greenhouse Gas Control, vol. 14, pp. 270-281, 2013, doi: 10.1016/j.ijggc.2013.01.007.
[7]M. Afkhamipour and M. Mofarahi, "Review on the mass transfer performance of CO2 absorption by amine-based solvents in low- and high-pressure absorption packed columns," RSC Advances, vol. 7, no. 29, pp. 17857-17872, 2017, doi: 10.1039/c7ra01352c.
[8]F. Wang, J. Zhao, H. Miao, J. P. Zhao, H. C. Zhang, J. L. Yuan, and J. Y. Yan, "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, vol. 230, pp. 734-749, Nov 15 2018, doi: 10.1016/j.apenergy.2018.08.116.
[9]Y. Wu, J. Xu, K. Mumford, G. W. Stevens, W. Fei, and Y. Wang, "Recent advances in carbon dioxide capture and utilization with amines and ionic liquids," Green Chemical Engineering, vol. 1, no. 1, pp. 16-32, 2020, doi: 10.1016/j.gce.2020.09.005.
[10]R. R. Bottoms, "Separating Acid Gases, U.S. Patent 1783901.," 1930.
[11]G. T. Rochelle, "Amine Scrubbing for CO2 Capture," Science, vol. 325, no. 5948, pp. 1652-4, Sep 25 2009, doi: 10.1126/science.1176731.
[12]H. P. Mangalapally and H. Hasse, "Pilot plant study of post-combustion carbon dioxide capture by reactive absorption: Methodology, comparison of different structured packings, and comprehensive results for monoethanolamine," Chemical Engineering Research and Design, vol. 89, no. 8, pp. 1216-1228, 2011, doi: 10.1016/j.cherd.2011.01.013.
[13]R. Notz, H. P. Mangalapally, and H. Hasse, "Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA," International Journal of Greenhouse Gas Control, vol. 6, pp. 84-112, 2012, doi: 10.1016/j.ijggc.2011.11.004.
[14]A. Aroonwilas and P. Tontiwachwuthikul, "High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP)," Separation and Purification Technology, vol. 12, no. 1, pp. 67-79, 1997, doi: 10.1016/s1383-5866(97)00037-3.
[15]A. Aroonwilas and P. Tontiwachwuthikul, "Mass Transfer Coefficients and Correlation for CO2 Absorption into 2-Amino-2-methyl-1-propanol (AMP) Using Structured Packing," Industrial & Engineering Chemistry Research, vol. 37, no. 2, pp. 569-575, 1998, doi: 10.1021/ie970482w.
[16]A. Aroonwilas, A. Veawab, and P. Tontiwachwuthikul, "Behavior of the Mass-Transfer Coefficient of Structured Packings in CO2 Absorbers with Chemical Reactions," Industrial & Engineering Chemistry Research, vol. 38, no. 5, pp. 2044-2050, 1999, doi: 10.1021/ie980728c.
[17]Z. W. Li, S. A. G. Chen, D. Hopkinson, and D. Luebke, "Verification of a solvent optimization approach for postcombustion CO2 capture using commercial alkanolamines," International Journal of Greenhouse Gas Control, vol. 44, pp. 59-65, Jan 2016, doi: 10.1016/j.ijggc.2015.11.002.
[18]E. Osagie, C. Biliyok, G. Di Lorenzo, D. P. Hanak, and V. Manovic, "Techno-economic evaluation of the 2-amino-2-methyl-1-propanol (AMP) process for CO2 capture from natural gas combined cycle power plant," International Journal of Greenhouse Gas Control, vol. 70, pp. 45-56, Mar 2018, doi: 10.1016/j.ijggc.2018.01.010.
[19]J. Gabrielsen, H. F. Svendsen, M. L. Michelsen, E. H. Stenby, and G. M. Kontogeorgis, "Experimental validation of a rate-based model for CO2 capture using an AMP solution," Chemical Engineering Science, vol. 62, no. 9, pp. 2397-2413, May 2007, doi: 10.1016/j.ces.2007.01.034.
[20]Y. J. Lin, T. Madan, and G. T. Rochelle, "Regeneration with Rich Bypass of Aqueous Piperazine and Monoethanolamine for CO2 Capture," Industrial & Engineering Chemistry Research, vol. 53, no. 10, pp. 4067-4074, Mar 12 2014, doi: 10.1021/ie403750s.
[21]G. G. Jang, J. A. Thompson, X. Sun, and C. Tsouris, "Process intensification of CO2 capture by low-aqueous solvent," Chemical Engineering Journal, vol. 426, Dec 15 2021, doi: ARTN 13124010.1016/j.cej.2021.131240.
[22]A. Cousins, L. T. Wardhaugh, and P. H. M. Feron, "Analysis of combined process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption," Energy Procedia, vol. 4, pp. 1331-1338, 2011, doi: 10.1016/j.egypro.2011.01.191.
[23]Y. Le Moullec, T. Neveux, A. Al Azki, A. Chikukwa, and K. A. Hoff, "Process modifications for solvent-based post-combustion CO2 capture," International Journal of Greenhouse Gas Control, vol. 31, pp. 96-112, 2014, doi: 10.1016/j.ijggc.2014.09.024.
[24]L. Guo, Y. Ding, X. Li, X. Zhu, Q. Liao, and S. Yuan, "Simulation and Optimization Study on Aqueous MEA-Based CO2 Capture Process," 2018.
[25]H. X. Gao, L. P. Zhou, Z. W. Liang, R. O. Idem, K. Y. Fu, T. Sema, and P. Tontiwachwuthikul, "Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine," International Journal of Greenhouse Gas Control, vol. 24, pp. 87-97, May 2014, doi: 10.1016/j.ijggc.2014.03.001.
[26]A. Aroonwilas and A. Veawab, "Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column," Industrial & Engineering Chemistry Research, vol. 43, no. 9, pp. 2228-2237, Apr 28 2004, doi: 10.1021/ie0306067.
[27]李寶田, "高爐氣的燃燒尾氣之二氧化碳捕捉的溶劑評估," 國立清華大學化學工程學系碩士論文, 新竹, 2012.
[28]Y. Song and C.-C. Chen, "Symmetric Electrolyte Nonrandom Two-Liquid Activity Coefficient Model," Industrial & Engineering Chemistry Research, vol. 48, no. 16, pp. 7788-7797, 2009, doi: 10.1021/ie9004578.
[29]O. Redlich and J. N. Kwong, "On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions," Chem Rev, vol. 44, no. 1, pp. 233-44, Feb 1949, doi: 10.1021/cr60137a013.
[30]H. Isogai and T. Nakagaki, "Mechanistic analysis of post-combustion CO2 capture performance during amine degradation," International Journal of Greenhouse Gas Control, vol. 114, Feb 2022, doi: 10.1016/j.ijggc.2022.103597.
[31]Aspen Technology, "Rate-Based Model of the CO2 Capture Process by MEA using Aspen Plus," Aspen Technology Inc, Cambridge, MA, USA, 2008.
[32]Aspen Technology, "Rate-Based Model of the CO2 Capture Process by AMP using Aspen Plus," Aspen Technology Inc, Cambridge, MA, USA, 2008.
[33]S. P. R. A. Udara, R. Kohilan, M. A. L. Lakshan, M. K. L. Madalagama, P. R. P. Pathirana, and P. W. S. Sandupama, "Simulation of carbon dioxide capture for industrial applications," Energy Reports, vol. 6, pp. 659-663, 2020, doi: 10.1016/j.egyr.2019.11.134.
[34]M. Afkhamipour and M. Mofarahi, "Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution," International Journal of Greenhouse Gas Control, vol. 15, pp. 186-199, Jul 2013, doi: 10.1016/j.ijggc.2013.02.022.
[35]A. Almoslh, F. Alobaid, C. Heinze, and B. Epple, "Comparison of Equilibrium-Stage and Rate-Based Models of a Packed Column for Tar Absorption Using Vegetable Oil," Appl Sci-Basel, vol. 10, no. 7, Apr 2020, doi: 10.3390/app10072362.
[36]J. L. Liu, H. C. Gao, C. C. Peng, D. S. H. Wong, S. S. Jang, and J. F. Shen, "Aspen Plus rate-based modeling for reconciling laboratory scale and pilot scale CO2 absorption using aqueous ammonia," International Journal of Greenhouse Gas Control, vol. 34, pp. 117-128, Mar 2015, doi: 10.1016/j.ijggc.2015.01.009.
[37]R. Taylor and R. Krishna, Multicomponent mass transfer. John Wiley & Sons, 1993.
[38]Y. Zhang, H. Chen, C.-C. Chen, J. M. Plaza, R. Dugas, and G. T. Rochelle, "Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution," Industrial & Engineering Chemistry Research, vol. 48, no. 20, pp. 9233-9246, 2009, doi: 10.1021/ie900068k.
[39]J. L. Liu, "Investigation into an energy-saving mechanism for advanced stripper configurations in post-combustion carbon capture Author links open overlay panel," Journal of the Taiwan Institute of Chemical Engineers, vol. 108, pp. 43-54, Mar 2020, doi: 10.1016/j.jtice.2019.12.012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top