( 您好!臺灣時間:2024/07/18 07:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):The Development of Metal and Metal Compound Nanomaterials for Energy Storage and Photo/Electrochemical Catalytic Application
指導教授(外文):WANG, DI-YAN
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在論文的第三章節試圖發展高活性的二硫化鐵奈米材料在一般大氣環境下進行電催化氮還原反應產氨。在-0.6 V 的電位下,二硫化鐵在氮氣飽和的0.25 M過氯酸鋰水溶液中,展現出14.14%的高法拉第效率及每分鐘0.096 微克的高產率。透過近紅外光的雷射產生光電效應,些微的增加其產率至每分鐘0.1微克及14.57%的法拉第效率。
最後,為了解決在水中由工業或是農業產生過多的硝酸根離子並轉換成實用的氨,以助於氮的循環。由水熱法合成的CuOx-TiO2 奈米粒子進行光催化硝酸根還原反應。藉由CuOx的奈米團簇修飾在TiO2上,在0.1 M KNO3表現出153.09 μg gcat-1 h-1 的產率。藉由臨場的X光吸收光譜,觀察催化劑在反應過程中產生的變化,試圖了解其光催化的機制。透過銅的輔助下,其展現比TiO2高三倍的產率。

The rapid development of industry has brought convenience to people's lives, but it has also consumed a significant amount of environmental resources such as oil and rare minerals. This has resulted in urgent problems that to be solved, such as global warming, and resource depletion. With the continuous deterioration of the environment, these are issues that must be resolved shortly. With the rapid development of renewable energy, efficient energy storage or conversion into other usable resources has become an important issue. On the other hand, with the growing global population, there is a corresponding increase in the demand for food. From the view of production, fertilizer is one of the most effective to increase productivity per unit area. Ammonia is a crucial starting material in the nitrogen fertilizer industry, and it is indispensable for achieving high yields in modern agriculture. Currently, ammonia production is mainly carried out through the Haber process, which requires high temperatures and pressures, consuming a significant amount of energy and releasing a large amount of greenhouse gases. Therefore, finding suitable alternative methods for ammonia production is also a significant research project. In this thesis, my research is divided into three projects: the development of zinc-silver/air hybrid battery, the electrocatalytic nitrogen reduction reaction with iron pyrite, and the photocatalytic nitrate reduction reaction with subnanoclusters copper oxide decorated on titanium dioxide.
Firstly, in the second chapter of the paper, an attempt was made to develop a battery with high capacity and high voltage. Zinc-silver batteries have some advantages. The resources required for these batteries are relatively abundant on Earth, and their cost has also decreased. Zinc-silver batteries have a high potential difference and a decent theoretical capacity. By combining zinc-silver batteries with zinc-air batteries, a hybrid battery with high voltage and high capacity is created. This hybrid battery generates two plateaus during discharge, at 1.5 V and 1.1 V, with the higher plateau attributed to the reduction of Ag2O to Ag and the lower one resulting from an Ag-assisted oxygen reduction reaction. Cyclability tests have shown that the Coulombic efficiency remains above 85% after 1700 cycles. Furthermore, the battery can still perform charging and discharging behavior even when bent, allowing for more applications.
In the third chapter of the paper, efforts were made to develop highly active iron disulfide (FeS2) nanomaterials for electrocatalytic nitrogen reduction reaction to produce ammonia under ambient atmospheric conditions. At a potential of -0.6 V, iron disulfide exhibited a high Faradaic efficiency of 14.14% and a high production rate of 0.096 μg min-1 in a nitrogen-saturated 0.25 M lithium hypochlorite solution. By generating photoelectrochemical effects using near-infrared laser, the production rate increased slightly to 0.1 μg min-1 with a Faradaic efficiency of 14.57%.
Finally, to address the excessive nitrate ions generated in water by industrial or agricultural activities and convert them into useful ammonia to aid nitrogen circulation, CuOx-TiO2 nanoparticles synthesized by the hydrothermal method were employed for photocatalytic nitrate reduction. The CuOx-TiO2 nanoparticles decorated on TiO2 exhibited a production rate of 153.09 μg gcat-1 h-1 in a 0.1 M KNO3 solution. The photocatalytic mechanism was explored by conducting in-situ X-ray absorption spectroscopy to observe the catalyst's changes during the reaction. With the assistance of copper, the catalyst demonstrated a threefold higher production rate compared to TiO2.

Acknowledgment I
Publication List II
摘要 V
Abstract VII
Contents IX
Chapter 1 Introduction 1
1.1 The Energy Storage System—Alkaline Zinc Battery 1
1.1.1 Alkaline zinc batteries 1
1.1.2 Zn-Ag batteries 2
1.1.3 Zn-air batteries 3
1.2 Catalytic transformations to ammonia 4
1.2.1 Electrocatalysis of ammonia from nitrogen 4
1.2.2 Photocatalysis of ammonia from nitrate 5
1.3 Reference 7
Chapter 2 Instrumentation and Software 9
2.1 Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Analysis 9
2.2 Transmission electron Microscopy 10
2.3 X-ray diffractometer 11
2.4 Raman spectroscopy 14
2.5 X-ray absorption 15
2.5.1 XANES 17
2.5.2 EXAFS 18
2.6 Ultraviolet-Visible Spectroscopy (UV-vis) 19
2.7 Linear sweep voltammetry 20
2.8 Chronoamperometry (IT) 21
2.9 Reference 23
Chapter 3 Flexible Hybrid Zn-Ag/air Battery with Long Cycle Life 24
3.1 Abstract 25
3.2 Introduction 26
3.3 Experimental Section 28
3.3.1 Materials 28
3.3.2 Pretreatment of stainless steel wire screen 28
3.3.3 Electrochemical deposition of Ag nanoparticles on the stainless steel wire screen 28
3.3.4 The electrochemical measurement of Zinc/Ag and air hybrid battery 29
3.3.5 Polymer solid electrolyte preparation 29
3.3.6 The assembly of Zinc Ag/air hybrid pouch battery 30
3.3.7 Characterizations of silver electrode 30
3.4 Result and Discussion 31
3.5 Conclusion 40
3.6 Reference 41
Chapter 4 Photoactive Earth-abundant Iron pyrite catalysts for Electrocatalytic Nitrogen Reduction Reaction 47
4.1 Abstract 48
4.2 Introduction 49
4.3 Experimental Section 53
4.3.1 Materials: 53
4.3.2 Acid treatment of carbon fiber paper (CFP) 53
4.3.3 The fabrication of FeS2 grown on carbon fiber paper. 53
4.3.4 Electrochemical measurement of the nitrogen reduction reaction 54
4.3.5 Determination of NH3 generation amount 54
4.3.6 Determination of Faraday Efficiency (FE). 55
4.3.7 Characterization 56
4.4 Result and Discussion 57
4.5 Conclusion 68
4.6 Reference 69
Chapter 5 Reaction Mechanism of Photocatalytic Nitrate Reduction with Reduced Copper Photoproduced from Subnanoclusters Copper(II) Oxide Decorated on Titanium Oxide 74
5.1 Abstract 74
5.2 Introduction 75
5.3 Experimental Section 77
5.3.1 Materials 77
5.3.2 Synthesis of Copper oxide subnanoclusters decorated on Titanium oxide (CuOx-TiO2) 77
5.3.3 Synthesis of different transition metal oxide nanoclusters decorated on Titanium oxide. 78
5.3.4 Photochemical efficiency of nitrate reduction reaction 78
5.3.5 Characterization of oxidized CuOx-TiO2 nanoparticle 78
5.3.6 Determination of NH3 generation amount from nitrate reduction 78
5.4 Result and Discussion 80
5.5 Conclusion 97
5.6 Reference 98
Chapter 6 Summary and Perspective 101
6.1 Summary 101
6.2 Prospective 102

1.Lee, J. S.; Tai Kim, S.; Cao, R.; Choi, N. S.; Liu, M.; Lee, K. T.; Cho, J., Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 2011, 1 (1), 34-50.
2.Wang, X.; Li, M.; Wang, Y.; Chen, B.; Zhu, Y.; Wu, Y., A Zn–NiO rechargeable battery with long lifespan and high energy density. J. Mater. Chem. A 2015, 3 (16), 8280-8283.
3.Shang, W.; Yu, W.; Xiao, X.; Ma, Y.; Cheng, C.; Dai, Y.; Tan, P.; Ni, M., Microstructure-tuned cobalt oxide electrodes for high-performance Zn–Co batteries. Electrochim. Acta 2020, 353, 136535.
4.Yan, C.; Wang, X.; Cui, M.; Wang, J.; Kang, W.; Foo, C. Y.; Lee, P. S., Stretchable silver‐zinc batteries based on embedded nanowire elastic conductors. Adv. Energy Mater. 2014, 4 (5), 1301396.
5.Zamarayeva, A. M.; Gaikwad, A. M.; Deckman, I.; Wang, M.; Khau, B.; Steingart, D. A.; Arias, A. C., Fabrication of a High‐Performance Flexible Silver–Zinc Wire Battery. Adv. Electron. Mater. 2016, 2 (5), 1500296.
6.Caramia, V.; Bozzini, B., Materials science aspects of zinc–air batteries: a review. Mater Renew Sustain Energy . 2014, 3, 1-12.
7.Oshikiri, T.; Ueno, K.; Misawa, H., Selective dinitrogen conversion to ammonia using water and visible light through plasmon‐induced charge separation. Angew. Chem., Int. Ed. 2016, 55 (12), 3942-3946.
8.Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T., Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109 (6), 2209-2244.
9.Guo, C.; Ran, J.; Vasileff, A.; Qiao, S.-Z., Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH 3) under ambient conditions. Energy Environ. Sci 2018, 11 (1), 45-56.
10.Suryanto, B. H.; Du, H.-L.; Wang, D.; Chen, J.; Simonov, A. N.; MacFarlane, D. R., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal 2019, 2 (4), 290-296.
11.Wang, M.; Liu, S.; Qian, T.; Liu, J.; Zhou, J.; Ji, H.; Xiong, J.; Zhong, J.; Yan, C., Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. commun. 2019, 10 (1), 341.
12.Guha, A.; Narayanaru, S.; Kaley, N. M.; Rao, D. K.; Mondal, J.; Narayanan, T. N., Mechanistic insight into high yield electrochemical nitrogen reduction to ammonia using lithium ions. Mater. Today Commun. 2019, 21, 100700.
13.Shukla, S.; Saxena, A., Sources and leaching of nitrate contamination in groundwater. Curr. Sci. 2020, 118 (6).
14.Wick, K.; Heumesser, C.; Schmid, E., Groundwater nitrate contamination: factors and indicators. J. Environ. Manage. 2012, 111, 178-186.
15.Li, J.; Zhan, G.; Yang, J.; Quan, F.; Mao, C.; Liu, Y.; Wang, B.; Lei, F.; Li, L.; Chan, A. W., Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142 (15), 7036-7046.
16.Chen, G.-F.; Yuan, Y.; Jiang, H.; Ren, S.-Y.; Ding, L.-X.; Ma, L.; Wu, T.; Lu, J.; Wang, H., Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 2020, 5 (8), 605-613.
17.Singh, A. K., Experimental methodologies for the characterization of nanoparticles. ENPs 2016, 2, 125-170.
18.Nasrollahzadeh, M.; Sajadi, M. S.; Atarod, M.; Sajjadi, M.; Isaabadi, Z., An introduction to green nanotechnology. Academic Press: 2019.
19.Wikipedia contributors, X-ray crystallography. In Wikipedia, The Free Encyclopedia.
20.Wikipedia contributors, Raman spectroscopy. In Wikipedia, The Free Encyclopedia.
21.Yano, J.; Yachandra, V. K., X-ray absorption spectroscopy. Photosynth. Res. 2009, 102, 241-254.
22.Wikipedia contributors, X-ray absorption spectroscopy. In Wikipedia, The Free Encyclopedia.
23.Wikipedia contributors, Ultraviolet–visible spectroscopy. In Wikipedia, The Free Encyclopedia.
24.Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical energy storage for the grid: a battery of choices. Science 2011, 334 (6058), 928-935.
25.Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V., Overview of current and future energy storage technologies for electric power applications. Renewable and sustainable energy Rev. 2009, 13 (6-7), 1513-1522.
26.Armand, M.; Tarascon, J.-M., Building better batteries. nature 2008, 451 (7179), 652.
27.Bruce, P. G.; Scrosati, B.; Tarascon, J. M., Nanomaterials for rechargeable lithium batteries. Angew. Chem.,Int. Ed. 2008, 47 (16), 2930-2946.
28.Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C., Thermal runaway caused fire and explosion of lithium ion battery. J. power sources 2012, 208, 210-224.
29.Balakrishnan, P.; Ramesh, R.; Kumar, T. P., Safety mechanisms in lithium-ion batteries. J. power sources 2006, 155 (2), 401-414.
30.Li, Y.; Gong, M.; Liang, Y.; Feng, J.; Kim, J.-E.; Wang, H.; Hong, G.; Zhang, B.; Dai, H., Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. commun. 2013, 4, 1805.
31.Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z., Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 2017, 29 (7), 1604685.
32.Li, Y.; Lu, J., Metal–air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2017, 2 (6), 1370-1377.
33.Li, Y.; Dai, H., Recent advances in zinc–air batteries. Chem. Soc. Rev. 2014, 43 (15), 5257-5275.
34.Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z., Recent progress in redox flow battery research and development. Adv. Funct. Mater. 2013, 23 (8), 970-986.
35.Li, L.; Kim, S.; Wang, W.; Vijayakumar, M.; Nie, Z.; Chen, B.; Zhang, J.; Xia, G.; Hu, J.; Graff, G., A stable vanadium redox‐flow battery with high energy density for large‐scale energy storage. Adv. Energy Lett. 2011, 1 (3), 394-400.
36.Wang, D.-Y.; Wei, C.-Y.; Lin, M.-C.; Pan, C.-J.; Chou, H.-L.; Chen, H.-A.; Gong, M.; Wu, Y.; Yuan, C.; Angell, M., Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature commun. 2017, 8, 14283.
37.Lin, M.-C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.-Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.-J., An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520 (7547), 324.
38.Cheng, F.; Chen, J., Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41 (6), 2172-2192.
39.Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z.; Liu, H.; Xia, B. Y., Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Adv. Sci. 2018, 5 (4), 1700691.
40.Wei, Z.; Huang, W.; Zhang, S.; Tan, J., Carbon-based air electrodes carrying MnO2 in zinc–air batteries. J. Power Sources 2000, 91 (2), 83-85.
41.Ovshinsky, S. R.; Fierro, C.; Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M. A.; Zallen, A.; Hicks, T., Catalyst for fuel cell oxygen electrodes. U.S. Patent: 2006.
42.Li, B.; Quan, J.; Loh, A.; Chai, J.; Chen, Y.; Tan, C.; Ge, X.; Hor, T. A.; Liu, Z.; Zhang, H., A Robust Hybrid Zn-Battery with Ultralong Cycle Life. Nano Lett. 2016, 17 (1), 156-163.
43.Iliev, I.; Gamburzev, S.; Kaisheva, A., Optimization of the pyrolysis temperature of active carbon-CoTMPP catalysts for air electrodes in alkaline media. J. Power Sources 1986, 17, 345-352.
44.Wang, M.; Qian, T.; Zhou, J.; Yan, C., An efficient bifunctional electrocatalyst for a zinc–air battery derived from Fe/N/C and bimetallic metal–organic framework composites. ACS Appl. Mater. Interfaces 2017, 9 (6), 5213-5221.
45.Prabu, M.; Ketpang, K.; Shanmugam, S., Hierarchical nanostructured NiCo 2 O 4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries. Nanoscale 2014, 6 (6), 3173-3181.
46.Prabu, M.; Ramakrishnan, P.; Nara, H.; Momma, T.; Osaka, T.; Shanmugam, S., Zinc–air battery: understanding the structure and morphology changes of graphene-supported CoMn2O4 bifunctional catalysts under practical rechargeable conditions. Appl. Mater.Interfaces 2014, 6 (19), 16545-16555.
47.Hu, J.; Wang, L.; Shi, L.; Huang, H., Oxygen reduction reaction activity of LaMn1-xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim. Acta 2015, 161, 115-123.
48.Lee, D. U.; Park, M. G.; Park, H. W.; Seo, M. H.; Ismayilov, V.; Ahmed, R.; Chen, Z., Highly active Co-doped LaMnO3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochem. Commun. 2015, 60, 38-41.
49.Goodenough, J. B.; Manoharan, R.; Paranthaman, M., Surface protonation and electrochemical activity of oxides in aqueous solution. J. Am. Chem. Soc. 1990, 112 (6), 2076-2082.
50.Lippert, T.; Montenegro, M.; Döbeli, M.; Weidenkaff, A.; Müller, S.; Willmott, P.; Wokaun, A., Perovskite thin films deposited by pulsed laser ablation as model systems for electrochemical applications. Prog. Solid State Chem. 2007, 35 (2-4), 221-231.
51.Passaniti, J. L.; Dopp, R. B., Method of making air cathode material having catalytically active manganese compounds of valance state+ 2. U.S. Patents: 1995.
52.Wu, C.-Y.; Wu, P.-W.; Lin, P.; Li, Y.-Y.; Lin, Y.-M., Silver-carbon nanocapsule electrocatalyst for oxygen reduction reaction. J. Electrochem. Soc. 2007, 154 (10), B1059-B1062.
53.Kumar, R.; Shin, J.; Yin, L.; You, J. M.; Meng, Y. S.; Wang, J., All‐Printed, Stretchable Zn‐Ag2O Rechargeable Battery via Hyperelastic Binder for Self‐Powering Wearable Electronics. Adv. Energy Mater. 2017, 7 (8), 1602096.
54.Berchmans, S.; Bandodkar, A. J.; Jia, W.; Ramírez, J.; Meng, Y. S.; Wang, J., An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. J. Mater. Chem. A 2014, 2 (38), 15788-15795.
55.Gaikwad, A. M.; Zamarayeva, A. M.; Rousseau, J.; Chu, H.; Derin, I.; Steingart, D. A., Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 2012, 24 (37), 5071-5076.
56.Kettlgruber, G.; Kaltenbrunner, M.; Siket, C. M.; Moser, R.; Graz, I. M.; Schwödiauer, R.; Bauer, S., Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. J. Mater. Chem. A 2013, 1 (18), 5505-5508.
57.Sumboja, A.; Chen, J.; Zong, Y.; Lee, P. S.; Liu, Z., NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn–air batteries. Nanoscale 2017, 9 (2), 774-780.
58.Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M., Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries. J. Power Sources 2010, 195 (13), 4350-4355.
59.Hu, S.; Han, T.; Lin, C.; Xiang, W.; Zhao, Y.; Gao, P.; Du, F.; Li, X.; Sun, Y., Enhanced Electrocatalysis via 3D Graphene Aerogel Engineered with a Silver Nanowire Network for Ultrahigh‐Rate Zinc–Air Batteries. Adv. Funct. Mater. 2017, 27 (18), 1700041.
60.Park, M. G.; Lee, D. U.; Seo, M. H.; Cano, Z. P.; Chen, Z., 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc–Air Batteries. Small 2016, 12 (20), 2707-2714.
61.Du, G.; Liu, X.; Zong, Y.; Hor, T. A.; Yu, A.; Liu, Z., Co 3 O 4 nanoparticle-modified MnO 2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc–air batteries. Nanoscale 2013, 5 (11), 4657-4661.
62.Guo, Z.; Li, C.; Li, W.; Guo, H.; Su, X.; He, P.; Wang, Y.; Xia, Y., Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 2016, 4 (17), 6282-6289.
63.Meng, C.; Ling, T.; Ma, T. Y.; Wang, H.; Hu, Z.; Zhou, Y.; Mao, J.; Du, X. W.; Jaroniec, M.; Qiao, S. Z., Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 2017, 29 (9), 1604607.
64.Guo, C.; Ran, J.; Vasileff, A.; Qiao, S.-Z., Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH 3) under ambient conditions. Energy Environ. Sci. 2018, 11 (1), 45-56.
65.Smil, V., Detonator of the population explosion. Nature 1999, 400 (6743), 415.
66.Tilman, D.; Cassman, K. G.; Matson, P. A.; Naylor, R.; Polasky, S., Agricultural sustainability and intensive production practices. Nature 2002, 418 (6898), 671.
67.Appl, M., Ammonia, 2. production processes. Ullmann's Encyclopedia of Industrial Chemistry 2000.
68.Roger, I.; Shipman, M. A.; Symes, M. D., Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1 (1), 0003.
69.Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133 (19), 7296-7299.
70.Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S., Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C 2014, 118 (37), 21347-21356.
71.Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S., High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. J. Am. Chem. Soc. 2014, 136 (28), 10053-10061.
72.Wang, D.-Y.; Gong, M.; Chou, H.-L.; Pan, C.-J.; Chen, H.-A.; Wu, Y.; Lin, M.-C.; Guan, M.; Yang, J.; Chen, C.-W., Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137 (4), 1587-1592.
73.Kong, D.; Wang, H.; Lu, Z.; Cui, Y., CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136 (13), 4897-4900.
74.Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E., Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 2014, 53 (21), 5427-5430.
75.Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J.-Y.; Lim, K. H.; Wang, X., Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7 (8), 2624-2629.
76.Chan, K.; Tsai, C.; Hansen, H. A.; Nørskov, J. K., Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 2014, 6 (7), 1899-1905.
77.Li, F.; Chen, L.; Xue, M.; Williams, T.; Zhang, Y.; MacFarlane, D. R.; Zhang, J., Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets. Nano Energy 2017, 31, 270-277.
78.Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J., Hierarchical Porous O‐Doped g‐C3N4 with Enhanced Photocatalytic CO2 Reduction Activity. Small 2017, 13 (15), 1603938.
79.Li, C. W.; Kanan, M. W., CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134 (17), 7231-7234.
80.Rogers, C.; Perkins, W. S.; Veber, G.; Williams, T. E.; Cloke, R. R.; Fischer, F. R., Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J. Am. Chem. Soc. 2017, 139 (11), 4052-4061.
81.Song, Y.; Johnson, D.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Huang, J.; Yang, F.; Zhang, F.; Qiao, R., A physical catalyst for the electrolysis of nitrogen to ammonia. Sci. Adv. 2018, 4 (4), e1700336.
82.Hellman, A.; Baerends, E.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D.; Dahl, S. v.; Van Harrevelt, R.; Honkala, K.; Jonsson, H., Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 2006, 110, 17719.
83.Licht, S.; Cui, B.; Wang, B.; Li, F.-F.; Lau, J.; Liu, S., Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345 (6197), 637-640.
84.Tsuneto, A.; Kudo, A.; Sakata, T., Lithium-mediated electrochemical reduction of high pressure N2 to NH3. J. Electroanal. Chem. 1994, 367 (1-2), 183-188.
85.Zhou, F.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell-Worth, C.; Sun, C.; Zhang, X.; MacFarlane, D. R., Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017, 10 (12), 2516-2520.
86.Köleli, F.; Kayan, D. B., Low overpotential reduction of dinitrogen to ammonia in aqueous media. J. Electroanal. Chem. 2010, 638 (1), 119-122.
87.Hao, Y.-C.; Guo, Y.; Chen, L.-W.; Shu, M.; Wang, X.-Y.; Bu, T.-A.; Gao, W.-Y.; Zhang, N.; Su, X.; Feng, X., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2 (5), 448.
88.Milton, R. D.; Abdellaoui, S.; Khadka, N.; Dean, D. R.; Leech, D.; Seefeldt, L. C.; Minteer, S. D., Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein. Energy Environ. Sci. 2016, 9 (8), 2550-2554.
89.Tian, Y.-H.; Hu, S.; Sheng, X.; Duan, Y.; Jakowski, J.; Sumpter, B. G.; Huang, J., Non-Transition-Metal Catalytic System for N2 Reduction to NH3: A Density Functional Theory Study of Al-Doped Graphene. J. Phys. Chem. Lett. 2018, 9 (3), 570-576.
90.Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X., Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. Adv. Mater. 2018, 1800191.
91.Xiaojuan Zhu; Zaichun Liu; Qin Liu; Yonglan Luo; Xifeng Shi; Abdullah M. Asiri; Yuping Wu; Sun, X., Efficient and durable N2 reduction electrocatalysis under ambient conditions: b-FeOOH nanorods as a non-noble-metal catalyst. Chem. Comm. 2017, 54, 11332-11335.
92.Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U., The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 2008, 321 (5888), 572-575.
93.Ennaoui, A.; Fiechter, S.; Goslowsky, H.; Tributsch, H., Photoactive synthetic polycrystalline pyrite (FeS2). J. Electrochem. Soc. 1985, 132 (7), 1579-1582.
94.Zhu, D.; Zhang, L.; Ruther, R. E.; Hamers, R. J., Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12 (9), 836.
95.Skulason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jonsson, H.; Nørskov, J. K., A theoretical evaluation of possible transition metal electro-catalysts for N 2 reduction. Phys. Chem. Chem. Phys. 2012, 14 (3), 1235-1245.
96.Wang, D. Y.; Jiang, Y. T.; Lin, C. C.; Li, S. S.; Wang, Y. T.; Chen, C. C.; Chen, C. W., Solution‐Processable Pyrite FeS2 Nanocrystals for the Fabrication of Heterojunction Photodiodes with Visible to NIR Photodetection. Adv. Mater. 2012, 24 (25), 3415-3420.
97.Liu, S.; Li, M.; Li, S.; Li, H.; Yan, L., Synthesis and adsorption/photocatalysis performance of pyrite FeS2. Appl. Surf. Sci. 2013, 268, 213-217.
98.Van der Ham, C. J.; Koper, M. T.; Hetterscheid, D. G., Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43 (15), 5183-5191.
99.Suryanto, B. H.; Du, H.-L.; Wang, D.; Chen, J.; Simonov, A. N.; MacFarlane, D. R., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2 (4), 290-296.
100.Patil, S. B.; Wang, D. Y., Exploration and investigation of periodic elements for electrocatalytic nitrogen reduction. Small 2020, 16 (45), 2002885.
101.Lin, Z.-Q.; Yuan, S.-J.; Li, W.-W.; Chen, J.-J.; Sheng, G.-P.; Yu, H.-Q., Denitrification in an integrated bioelectro-photocatalytic system. Water Res. 2017, 109, 88-93.
102.Chang, C.-C.; Li, S.-R.; Chou, H.-L.; Lee, Y.-C.; Patil, S.; Lin, Y.-S.; Chang, C.-C.; Chang, Y. J.; Wang, D.-Y., Photoactive Earth-Abundant Iron Pyrite Catalysts for Electrocatalytic Nitrogen Reduction Reaction. Small 2019, 15 (49), 1904723.
103.Guo, Y.; Wang, T.; Yang, Q.; Li, X.; Li, H.; Wang, Y.; Jiao, T.; Huang, Z.; Dong, B.; Zhang, W., Highly efficient electrochemical reduction of nitrogen to ammonia on surface termination modified Ti3C2T x MXene nanosheets. ACS nano 2020, 14 (7), 9089-9097.
104.Jia, K.; Wang, Y.; Qiu, L.; Gao, J.; Pan, Q.; Kong, W.; Zhang, X.; Alshehri, A. A.; Alzahrani, K. A.; Zhong, B., TiS 2 nanosheets for efficient electrocatalytic N 2 fixation to NH 3 under ambient conditions. Inorg. Chem. Front. 2019, 6 (8), 1986-1989.
105.Luo, S.; Li, X.; Wang, M.; Zhang, X.; Gao, W.; Su, S.; Liu, G.; Luo, M., Long-term electrocatalytic N 2 fixation by MOF-derived Y-stabilized ZrO 2: insight into the deactivation mechanism. J. Mater. Chem. A 2020, 8 (11), 5647-5654.
106.Patil, S. B.; An, J.-Y.; Li, Z.-J.; Wu, Y.-C.; Gowdru, S. M.; Hsieh, H.-H.; Chen, Z.; Wang, D.-Y., Cost-Effective 1T-MoS2 Grown on Graphite Cathode Materials for High-Temperature Rechargeable Aluminum Ion Batteries and Hydrogen Evolution in Water Splitting. Catal. 2021, 11 (12), 1547.
107.Wu, Z.-Y.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F.-Y., Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. commun. 2021, 12 (1), 2870.
108.Wang, Y.; Zhou, W.; Jia, R.; Yu, Y.; Zhang, B., Unveiling the activity origin of a copper‐based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59 (13), 5350-5354.
109.Patil, S. B.; Liu, T.-R.; Chou, H.-L.; Huang, Y.-B.; Chang, C.-C.; Chen, Y.-C.; Lin, Y.-S.; Li, H.; Lee, Y.-C.; Chang, Y. J., Electrocatalytic reduction of NO3–to ultrapure ammonia on {200} facet dominant Cu nanodendrites with high conversion faradaic efficiency. J. Phys. Chem. 2021, 12 (33), 8121-8128.
110.Toe, C. Y.; Scott, J.; Amal, R.; Ng, Y. H., Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion. J. Photochem. Photobiol. C 2019, 40, 191-211.
111.Fracchia, M.; Ghigna, P.; Minguzzi, A.; Vertova, A.; Turco, F.; Cerrato, G.; Meroni, D., Role of synthetic parameters on the structural and optical properties of N, Sn-copromoted nanostructured TiO2: A combined Ti K-edge and Sn L2, 3-edges X-ray absorption investigation. Nanomater. 2020, 10 (6), 1224.

電子全文 電子全文(網際網路公開日期:20280725)
第一頁 上一頁 下一頁 最後一頁 top