跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯恩加
研究生(外文):KO, EN-CHIA
論文名稱:探討常壓非熱噴射電漿、紫外光及組合兩者對於辣椒片的殺菌效果及品質影響
論文名稱(外文):Evaluation of non-thermal atmospheric plasma jet, ultraviolet light, and their combination for microbial decontamination and quality of crushed red pepper
指導教授:徐詮亮徐詮亮引用關係
指導教授(外文):HSU. CHUAN-LIANG
口試委員:吳芳禎陳立賢黃怡銘
口試委員(外文):WU, FANG-CHENCHEN, LI-HSIENHUANG, YI-MING
口試日期:2022-09-01
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:75
中文關鍵詞:常壓非熱噴射電漿紫外光金黃色葡萄球菌腸道沙門氏菌殺菌辣椒片
外文關鍵詞:Non-thermal atmospheric plasma jetUltraviolet lightStaphylococcus aureusSalmonella entericamicrobial inactivationCrushed red pepper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
辣椒片是一種常見的辛香料,經過包裝後是一種不需再加熱的調味品,因此加工過程需要進行殺菌以防止食品中毒,然而現有的加工技術有著許多難以克服的缺點,如品質變化、健康疑慮等。電漿及紫外光是目前普遍被認為有效的非熱殺菌技術,本研究旨在組合常壓非熱噴射電漿處理與紫外光處理,在非熱且無殘留的前提下提升殺菌效果,且避免影響品質;處理參數中,電漿的產生電壓為85 V、工作氣體為空氣,流量為18 L/min,處理時間為0、1、2、4、8分鐘,紫外光強度為3420±100 µW/cm2,照射時間為0、5、15、30分鐘,以及組合兩者處理。實驗結果顯示,在殺菌能力方面,電漿4、8分鐘組合紫外光30分鐘處理接種微生物的辣椒片,能夠減少約0.78-0.90 log CFU/g的金黃色葡萄球菌(Staphylococcus aureus)及0.90-0.93 log CFU/g的腸道沙門氏菌(Salmonella enterica),在品質影響方面,色差(ΔE*)值最多造成4.37的ΔE值變化。在可萃取天然色素含量方面,觀察到可萃取天然色素含量由3.76±0.08 g/kg下降至3.24±0.48(電漿4分鐘組合紫外光30分鐘)及3.17±0.40 g/kg(電漿8分鐘組合紫外光30分鐘),與控制組相比未觀察到顯著差異。在辣椒素含量方面,觀察到辣椒素含量由0.30±0.01下降至0.25±0.01 g/kg (經電漿8分鐘組合紫外光30分鐘處理之辣椒片),依上述結果可知,本研究利用電漿組合紫外光技術具應用於辣椒片殺菌之潛力,且不明顯影響樣品品質。
Crushed red pepper is one of the most common spices, after packaging, it is considered a condiment does not require any processing, so the process requires disinfection to prevent food poisoning. However, the existing processing technology has many disadvantages that are difficult to overcome, such as quality changes, potentially harmful effects. Plasma and ultraviolet light are considered effective non-thermal microbial inactivation technologies. The objective of this study was to evaluate non-thermal atmospheric plasma jet and ultraviolet light treatment in combination, for improving the microbial inactivation effect and avoid quality changes under the premise of non-heat and no residue. Among the processing parameters, the ultraviolet light intensity was 3420±100 µW/cm2, the irradiation time was 0, 5, 15, and 30 minutes, the plasma voltage was 85 V, the working gas was air, the flow rate was 18 L/min, and the processing time was about 0, 1, 2, 4, 8 minutes, and a combination of both. The results of the research showed that in terms of microbial inactivation ability, plasma treatment for 4 and 8 minutes combine ultraviolet light for 30 minutes can reduce Staphylococcus aureus and Salmonella enterica for 0.78-0.90 and 0.90-0.93 log CFU/g, in terms of quality impact, the total color difference only up to 4.37, in the extractable natural color content measurement, the extractable natural color content decreased from 3.76±0.08 g/kg to 3.24±0.48 (4 minutes of plasma combine 30 minutes of ultraviolet light) and 3.17±0.40 g/kg (8 minutes of plasma combine 30 minutes of ultraviolet light) was observed, no significant difference was observed, in the capsaicin concentration measurement, capsaicin concentration decreased from 0.30±0.01 to 0.25±0.01 g/kg (8 minutes of plasma combine 30 minutes of ultraviolet light). In conclusions, the results indicate that the microbial inactivation technology developed in this study has the potential as inactivate bacteria technology in crushed red pepper with minimal impact on quality.
摘要 I
ABSTRAST III
目錄 V
表目錄 IX
圖目錄 X
第一章、緒言 1
1.1 研究背景 1
1.2 研究目的 3
第二章、文獻回顧 4
2.1 辣椒片 4
2.2食品安全衛生管理法規範檢測之微生物 6
2.2.1金黃色葡萄球菌 6
2.2.2沙門氏菌 7
2.3常用於乾燥香料的殺菌法 8
2.3.1熱處理 8
2.3.2環氧乙烷處理 8
2.3.3輻射處理 9
2.4紫外光 11
2.4.1基本理論 11
2.4.2殺菌機制 12
2.4.3紫外光於低水活性食品之殺菌應用 12
2.5 電漿 14
2.5.1電漿基本理論 15
2.5.2非熱電漿的設備種類 18
2.5.3電漿的殺菌機制 20
2.5.4電漿於低水活性食品之殺菌應用 22
2.6 電漿組合紫外光處理應用於食品殺菌 25
第三章、材料與方法 28
3.1實驗器材與儀器設備 28
3.1.1實驗試藥 28
3.1.2儀器設備 28
3.2微生物樣本製備 31
3.2.1培養基製備 31
3.2.2實驗用菌株 31
3.3實驗架構 32
3.4實驗樣品製備 34
3.5 殺菌處理 34
3.5.1電漿處理 34
3.5.2紫外光處理 35
3.5.3電漿與紫外光組合處理 35
3.6微生物計數 35
3.7辣椒片經殺菌處理之品質影響評估 36
3.7.1溫度測定 36
3.7.2顏色測定 36
3.7.3可萃取天然色素含量測定 37
3.7.4 辣椒素含量測定 37
3.7.4.1高效液相層析儀分析 38
3.8 統計分析 38
第四章、結果與討論 46
4.1電漿、紫外光、電漿組合紫外光處理對於辣椒片殺菌效果之影響 46
4.2 電漿、紫外光、電漿組合紫外光處理對於辣椒片品質之影響 53
4.2.1溫度測定 53
4.2.2 顏色測定 53
4.2.3 可萃取天然色素含量測定 60
4.2.4 辣椒素測定 62
第五章、結論 64
第六章、參考文獻 67
中文部分
朱俊霖(2015)。電漿與蝕刻。國家奈米元件實驗室奈米通訊,22(4),27–29。
陳中愷、徐詮亮(2013)。電漿技術於食品殺菌之應用現況與展望。食品工業,45(8),52-62。
黃怡銘、徐詮亮(2019)。常壓非熱電漿於食品科技之最新發展。食品資訊,291,58-64。
衛生福利部(2020)。食品中微生物衛生標準。取自全國法規資料庫,取自網址https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040142
張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川。(2006)。電漿源原理與應用之介紹。物理雙月刊,440-451。

英文部分
Anderson. K.L, Azizoglu. R.O. (2014). Detection and Causes of Bovine Mastitis with Emphasis on Staphylococcus aureus. In N. K. Van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 435-440). Cambridge, UK: Academic Press.
Aydin, A., Erkan, M.E., Bas¸kaya, R., Ciftcioglu, G. (2007). Determination of aflatoxin B1 levels in powdered red pepper. Food Control, 18, 1015–1018.
Bang, I. H., Kim, Y. E., Lee, S. Y., Min, S. C. (2020). Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C. Innovative Food Science and Emerging Technologies, 63, 102392.
Berke, T.G., Shieh, S.C. (2012). Capsicum cultivars. In K.V. Peter (Ed), Handbook of Herbs and Spices (2nd ed) (pp.116–130). Cambridge, UK: Woodhead Publishing.
Bernhardt, T., Semmler, M. L., Schäfer, M., Bekeschus, S., Emmert, Steffen., Boeckmann, Lars. (2019). Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology. Oxidative Medicine and Cellular Longevity, 3873928.
Buckenhuskes, H.J., Rendlen, M. (2004). Hygienic problems of phytogenic raw materials for food production with special emphasis to herbs and spices. Food Science and Biotechnology, 13(2), 262-268.

Charoux, C. M. G., Free, L., Hinds, L. M., Vijayaraghavan, R. K., Daniels, S., O’Donnell, C. P., Tiwari, B. K. (2020). Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of a model liquid food system and black pepper grains. LWT - Food Science and Technology, 118, 108716.
Chavan R.S., Sehrawat R., Mishra V., Bhatt S. (2016). Milk: Processing of Milk. In B. Caballero, P. M. Finglas, F. Toldrá (Eds.), Encyclopedia of Food and Health (pp 729-735). Cambridge, UK: Academic Press.
Cheon, H. L., Shin, J. Y., Park, K. H., Chung, M. S., Kang, D. H. (2015). Inactivation of foodborne pathogens in powdered red pepper Capsicum annuum L. using combined UV-C irradiation and mild heat treatment. Food Control, 50, 441–445.
Choi, E. J., Yang, H. S., Park, H. W., Chun, H. H. (2018). Inactivation of Escherichia coli O157:H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments. Food Science Technology, 93, 477–484.
Colejo, S., Alvarez-Ord´o˜nez, A., Prieto, M., Gonz´alez-Raurich, M., L´opez, M. (2018). Evaluation of ultraviolet light (UV), non-thermal atmospheric plasma (NTAP) and their combination for the control of foodborne pathogens in smoked salmon and their effect on quality attributes. Innovative Food Science and Emerging Technologies, 50, 84–93.
Collins, M.D., Wasmund, L.M., Bosland, P.W. (1995). Improved methods for quantifying capsaicinoids in Capsicum using high-performance liquid chromatography. Hortscience, 30, 137–139.
Dogu-Baykut, E., Gunes, G. (2019). Ultraviolet (UV-C) radiation as a practicalalternative to decontaminate thyme (Thymus vulgaris L.). Journal of Food Processing and Preservation, 43(6), e13842.
Ekezie, F.-G. C., Sun, D.-W., Cheng, J.-H. (2019). Altering the IgE binding capacity of king prawn (Litopenaeus vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chemistry, 300, 125143.
FDA (United States Food and Drug Administration). (2016). Food irradiation: What you need to know. http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/ UCM262295.pdf. (Accessed 20 October 2019).
Fine, F. and Gervais, P. (2005), Thermal destruction of dried vegetative yeast cells and dried bacterial spores in a convective hot air flow: strong influence of initial water activity. Environmental Microbiology, 7, 40-46.
Fridman, A. and Kennedy, L. A. (2004). Plasma physics and engineering (pp. 2-12). Boca Raton, USA: CRC press.
Gieraltowski L., Julian E., Pringle J., Macdonald K., Quilliam D., Marsden-Haug N., Saathoff-Huber L., Von Stein D., Kissler B., Parish M., Elder D., Howard-King V., Besser J., Sodha S., Loharikar A., Dalton S., Williams I., Barton Behravesh C (2013). Nationwide outbreak of Salmonella montevideo infections associated with contaminated imported black and red pepper: Warehouse membership cards provide critical clues to identify the source. Epidemiology and Infection, 141(6), 1244–1252.
Hertwig, C., Reineke, K., Ehlbeck, J., Erdo˘gdu, B., Rauh, C., Schlüter, O. (2015). Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. Journal of Food Engineering, 167, 12–17.
Inguglia, E. S., Oliveira, M., Burgess, C. M., Kerry, J. P., & Tiwari, B. K. (2020). Plasma-activated water as an alternative nitrite source for the curing of beef jerky: Influence on quality and inactivation of Listeria innocua. Innovative Food Science and Emerging Technologies, 59, 102276.
Keklik, N. M., Krishnamurthy, K., Demirci, A. (2012). 12 - Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In A. Demirci, M. O. Ngadi, (Eds.), Microbial Decontamination in the Food Industry(pp. 344-369). Cambridge, UK: Woodhead Publishing.
Kim, J. E., Lee, D. U., Min, S. C. (2014). Microbial decontamination of red pepper powder by cold plasma. Food Microbiology, 38, 128–136.
L. Z. Deng., Y. Tao., A. S. Mujumdar., Z. Pan., C. Chen., X.-H. Yang., Z.-L. Liu., H. Wang., H.-W.i Xiao (2020). Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends in Food Science and Technology, 106, 104–112.
Lao F. and Giusti M. M. (2017). The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders, Food Chemistry, 227, 376-382.
Laroque, D. A., Se ́o, S. T., Valencia, G. A., Laurindo, J. B., Carciofi, B. A. M. (2022). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312, 110748.
Lee, S.Y., Park, H.H., Min, S.C. (2020). Pulsed light plasma treatment for the inactivation of Aspergillus flavus spores, Bacillus pumilus spores, and Escherichia coli O157:H7 in red pepper flakes. Food Control, 118, 107401.
Lehmacher, A., Bockemühl, J., Aleksic, S. (1995). Nationwide outbreak of human salmonellosis in Germany due to contaminated paprika and paprika-powdered potato chips. Epidemiology and Infection, 115(3), 501-511.
Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control, 75, 83–91.
Lynne A.M, Foley S.L, Han J. (2016). Salmonella: Properties and Occurrence. In B. Caballero, P. M. Finglas, F. Toldrá (Eds), Encyclopedia of Food and Health (pp. 695-700). Cambridge, UK: Academic Press.
Moerman, F. and Mager, K. (2016). Chapter 35—Cleaning and Disinfection in Dry Food Processing Facilities. In H. Lelieveld, J. Holah, and D. Gabri´c (Eds.), Handbook of Hygiene Control in the Food Industry (second ed) (pp. 521–554). Cambridge, UK: Woodhead Publishing.
Mukhopadhyay, S., and Gorris, L. G. M. (2014). Hurdle technology. In C. A. Batt, M. L. Tortorello (Eds.), Encyclopedia of food microbiology (Vol. 2, pp. 221–227). UK: Elsevier Ltd, Academic Press.
Mumy K.L. (2014). Salmonella. In P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition)(pp. 211-212). Cambridge, UK: Academic Press.
O. Schlüter., J. Ehlbeck., C. Hertel., M. Habermeyer., A. Roth., K.-H. Engel., T. Holzhauser., D. Knorr., G. Eisenbrand (2013). Opinion on the use of plasma processes for treatment of foods. Molecular Nutrition and Food Research, 57, 920–927.
Ribeiro, J., Cavaglieri, L., Vital, H., Cristofolini, A., Merkis, C., Astoreca, A., Orlando, J., Carú, M., Dalcero, A., Rosa, C. A. R. (2011). Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production. Radiation Physics and Chemistry, 80(5), 658–663.
Ricke. S. C., Calo J. R., Kaldhone P, (2015). Chapter 7 - Salmonella Control in Food Production: Current Issues and Perspectives in the United States. In S. C. Ricke, J. R. Donaldson, C. A. Phillips (Eds), Food Safety (pp. 2015). Cambridge, UK: Academic Press.
Rifna, E. J., Singh, S. K., Chakraborty, S., Dwivedi, M. (2019). Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Research International, 126, 2019, 108654.
Schweiggert, U., Carle, R., Schieber, A. (2007). Conventional and alternative processes for spice production–a review. Trends in Food Science and Technology, 18(5), 260–268.
Statista. (2022). Global spices and herbs market size forecast 2022 and 2023. Retrieved September 7, 2022, from https://www.statista.com/statistics/876234/global-seasoning-and-spices-market-size/
Sun, S., Anderson, N.M. Keller, S. (2014), Atmospheric Pressure Plasma Treatment of Black Peppercorns Inoculated with Salmonella and Held Under Controlled Storage. Journal of Food Science, 79, E2441-E2446.
Syamaladevi, R.M., Tang, J., Villa-Rojas, R., Sablani, S., Carter, B. Campbell, G. (2016), Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods: A Review. Comprehensive reviews in food science and food safety, 15, 353-370.
Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., Valdramidis, V.P. (2018). Plasma activated water (PAW): chemistry, physicochemical properties, applications in food and agriculture. Trends in Food Science and Technology, 77, 21–31.
Todd. E.C.D. (2014). Bacteria: Staphylococcus aureus. In Y. Motarjemi (Ed.), Encyclopedia of Food Safety (pp. 530-534). Cambridge, UK: Academic Press.
Yang, X. H., Deng, L. Z., Mujumdar, A. S., Xiao, H. W., Zhang, Q., Kan, Z. (2018). Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying. Journal of Food Engineering, 231, 101–108.
Young, K.W. and Whittle, K.J. (1985), Colour measurement of fish minces using hunter L, a, b values. Journal of the Science of Food and Agriculture, 36, 383-392.
Zhang X. L., Zhong C.S., Mujumdar A. S., Yang X.H., Deng L.Z., Wang J., Xiao H.-W (2019). Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). Journal of Food Engineering, 241, 51–57.
Ziuzina D., Los A., Bourke P. (2018). Chapter 12 - Inactivation of Staphylococcus aureus in Foods by Thermal and Nonthermal Control Strategies. In A. Fetsch (Ed.), Staphylococcus aureus (pp. 235-255). Cambridge, UK: Academic Press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top