跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/16 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃千薰
研究生(外文):HUANG, CIAN-SYUN
論文名稱:側鏈含3,6-雙(甲氧基)咔唑取代的三苯胺基團之芳香族聚醯胺與聚醯胺醯亞胺的合成及其光電性質的研究
論文名稱(外文):Synthesis and Optoelectronic Properties of Aromatic Polyamide and Poly(amide-imide)s Bearing 3,6-(Dimethoxycarbazol-9-yl)triphenylamine Units
指導教授:蕭勝輝
指導教授(外文):HSIAO, SHENG-HUEI
口試委員:蕭勝輝李文福龔宇睿
口試委員(外文):HSIAO, SHENG-HUEILEE, WEN-FUKUNG, YU-RUEI
口試日期:2023-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:86
中文關鍵詞:三苯胺咔唑聚醯胺聚醯胺醯亞胺電致變色光譜電化學
外文關鍵詞:TriphenylamineCarbazolePolyamidesPoly(amide-imide)s,ElectrochromismSpectroelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們合成了一個新型含有 3,6-dimethoxycarbazol-9-yl 取代的三苯胺基團之二羧酸單體,4,4'-dicarboxy-4''-(3,6-dimethoxycarbazol-9-yl)triphenylamine,隨後再與芳香族二胺聚縮合製得一系列芳香族聚醯胺。此外,4,4'-diamino-4''-(3,6-dimethoxycarbazol-9-yl)triphenylamine與兩倍當量的trimellitic anhydride行縮合反應得到一種帶有兩個醯亞胺環的二羧酸單體4,4'-bis(trimellitimido)-4''-(3,6-dimethoxycarbazol-9-yl)triphenylamine,再將此二醯亞胺二羧酸單體與芳香族二胺聚縮合製得另一系列側鏈含3,6-雙(甲氧基)咔唑取代的三苯胺基團之芳香族聚醯胺醯亞胺。這些聚合物均可溶在多種有機溶劑並由其溶液塗製成透明的薄膜,它們表現出優異的熱穩定性,聚醯胺的玻璃態轉移溫度(Tg)在258 ̶ 284 oC之間,聚醯胺醯亞胺的Tg在 267 ̶ 304 °C 之間,熱重量分析結果顯示所有的聚合物在400 oC之前不會發生明顯的熱裂解。這些聚合物的循環伏安圖顯示二到四個氧化還原反應,他們的薄膜顏色可從中性態的無色轉變成綠色、藍色或深藍色的氧化態,部分高分子表現出優異的電致變色穩定性和良好的著色效率。
A novel carbazole-derived, triphenylamine-containing aromatic dicarboxylic acid monomer, 4,4'-dicarboxy-4''-(3,6-dimethoxycarbazol-9-yl)triphenylamine, was synthesized and reacted with various aromatic diamines via phosphorylation condensation leading to a series of aromatic polyamides. Furthermore, a new imide ring-preformed dicarboxylic acid monomer, namely 4,4'-bis(trimellitimido)-4''-(3,6-dimethoxycarbazol-9-yl)triphenylamine, was synthesized from the condensation of 4,4'-diamino-4''-(3,6-dimethoxycarbazol-9-yl)triphenylamine with two equivalent amount of trimellitic anhydride. Another series of novel electroactive aromatic poly(amide-imide)s (PAIs) bearing triphenylamine groups in the main chain together with pendent 3,6-dimethoxycarbazole units were prepared by the phosphorylation polyamidation of the newly synthesized diimide-diacid monomer with various aromatic diamines. All the synthesized polymers are soluble in various organic solvents and can be cast into transparent thin films from their solutions. They exhibit high thermal stability, with glass transition temperatures (Tg) in the range of 258 ̶ 284°C for the polyamides and 267 ̶ 304 °C for the poly(amide-imide)s and no significant weight loss before 400 °C as measured by thermogravimetric analysis. Cyclic voltammetry diagrams indicated that these polymers exhibited two to four redox states. The color of their thin films could change from colorless in the neutral state to green, blue, or dark blue in the oxidized states. Some of the polymers demonstrated excellent electrochromic stability and good coloring efficiency.
摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF SCHEMES vii
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 EXPERIMENTAL 4
2.1 Materials 4
2.2 Monomer Synthesis of Chapter 3 6
2.3 Monomer Synthesis of Chapter 4 9
2.4 Synthesis of Polyamides 10
2.5 Synthesis of Poly(amide-imide)s 11
2.6 Preparation of the Polyamide Films 12
2.7 Instrumentation and Measurements 12
CHAPTER 3 Synthesis and Optoelectronic Properties of Aromatic Polyamide Bearing 3,6-(Dimethoxycarbazol-9-yl)triphenylamine Units 14
3.1 Monomer Synthesis 14
3.2 Synthesis of Model Compound 19
3.3 Optical Properties of Model Compounds 21
3.4 Synthesis of Polyamides 25
3.5 Polymer Properties 28
CHAPTER 4 Synthesis and Optoelectronic Properties of Aromatic Poly(amide-imide)s Bearing 3,6-(Dimethoxycarbazol-9-yl)triphenylamine Units 54
4.1 Monomer Synthesis 54
4.2 Synthesis of Poly(amide-imide)s 57
4.3 Polymer Properties 60
CHAPTER 5 CONCLUSIONS 82
REFERENCES 83


1.(a) P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and Applications; VCH: Weinheim, Germany, 1995; (b) P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007.
2.N. Kobayashi, S. Miura, M. Nishimura, H. Urano, Organic electrochromism for a new color electronic paper. Solar Energy Materials and Solar Cells, 2008, 92, 136−139.
3.R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18.
4.A.M. Osterholm, D.E. Shen, J.A. Kerszulis, R.H. Bulloch, M. Kuepfert, A.L. Dyer, J.R. Reynolds, Four shades of brown: Tuning of electrochromic polymer blends toward high-contrast eyewear. ACS applied materials & interfaces, 2015, 7, 1413−1421.
5.R. Baetens, B.P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar energy materials and solar cells, 2010, 94, 87−105.
6.C.G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1−38.
7.Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P.S. Lee, Y. Long, Smart windows: electro‐, thermo‐, mechano‐, photochromics, and beyond. Advanced Energy Materials, 2019, 9, 1902066.
8.N.R. Lynam, Electrochromic Automotive Day/Night Mirrors. SAE Transactions, 1987, 96, 891−899.
9.H. Yu, S. Shao, L. Yan, H. Meng, Y. He, C. Yao, P. Xu, X. Zhang, W. Hu, W. Huang, Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016, 4, 2269−2273.
10.S. Beaupre, A. C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells base on poly(2,7-carbazole) derivatives for adaptive camouflage. Chemistry of Materials, 2009, 21, 1504−1513.
11.P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Materials today, 2016, 19, 394−402.
12.Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji, H. Qu, N. Li, J. Zhao, Y. Li, Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Science China Chemistry, 2017, 60, 13−37.
13.L. Beverina, G. Pagani, M. Sassi, Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach. Chemical Communications, 2014, 50, 5413−5430.
14.D. T. Gillaspie, R. C. Tenent, A. C. Dillon, Metal-oxide films for electrochromic applications: present technology and future directions. Journal of Materials Chemistry, 2010, 20, 9585−9592.
15.M. Higuchi, Electrochromic organic-metallic hybrid polymers: fundamentals and device applications. Polymer journal, 2009, 41, 511−520.
16.Z.-J. Li, J.-Y. Shao, Y.-W. Zhong, Near-infrared and two-wavelength electrochromism based on nanocrystalline TiO2 films functionalized with Ruthenium-amine conjugated complexes. Inorganic Chemistry, 2017, 56, 8538−8546.
17.P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chemical reviews, 2010, 110, 268−320.
18.W. T. Neo, Q. Ye, S.-J. Chua, J. Xu, Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. Journal of Materials Chemistry C, 2016, 4, 7364−7376.
19.L. Beverina, G. A. Pagani, M. Sassi, Multichromophoric electrochromic polymers: color tuning of conjugated polymers through the side chain functionalization approach. Chemical Communications, 2014, 50, 5413−5430.
20.H. Yang, Kevlar Aramid Fiber; Wiley: Chichester, UK, 1993
21.J. M. García, F. C. García, F. Serna, J. L. de la Peña, High-performance aromatic polyamides. Progress in Polymer Science, 2010, 35, 623−686.
22.J. P. Chen, A. Natansohn, Synthesis and characterization of novel carbazole-containing soluble polyimides. Macromolecules, 1999, 32, 3171−3177.
23.G.-S. Liou, S.-H. Hsiao, N.-K. Huang, Y.-L. Yang, Synthesis, photophysical, and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials. Macromolecules, 2006, 39, 5337−5346.
24.S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38, 307−316.
25.S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel electrochromic aromatic poly(amine-amide-imide)s with pendent triphenylamine structures. Polymer, 2005, 46, 5939−5948.
26.G.-S. Liou, S.-H. Hsiao, T.-H. Su, Synthesis, luminescence and electrochromism of aromatic poly(amine-amide)s with pendent triphenylamine moieties. Journal of Materials Chemistry, 2005, 15, 1812−1820.
27.G.-S. Liou, H.-Y. Lin, Electrochemical and electrochromic properties of novel aromatic poly(amine-amide)s derived from N, N′-bis (4-carboxyphenyl)-N, N′-diphenyl-1, 4-phenylenediamine. European Polymer Journal, 2006, 42, 1051−1058.
28.Y. Imai, Synthesis of polyamideimides. Polyimides Fundamentals and Applications. CRC Press, 2018, 49−70.
29.N. Yamazaki, M. Matsumoto, F. Higashi, Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. Journal of Polymer Science: Polymer Chemistry Edition, 1975, 13, 1373–1380.
30.W. Wrasidlo, J. Augl, Aromatic polyimide-co-amides. I. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1969, 7, 321−332.
31.J. L. Nieto, J. G. de la Campa, J. de Abajo, Aliphatic‐aromatic polyamide‐imides from diisocyanates, 1. 1H and 13C NMR study of polymer structure. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1982, 183, 557−569.
32.S.-H. Hsiao, C.-P. Yang, C.-W. Chen, G.-S. Liou, Synthesis and properties of novel poly(amide-imide)s containing pendent diphenylamino groups. European Polymer Journal, 2005, 41, 511−517.
33.H.-M. Wang, S.-H. Hsiao, Multicolor electrochromic poly(amide-imide)s with N, N-diphenyl-N′, N′-di-4-tert-butylphenyl-1, 4-phenylenediamine moieties. Polymer Chemistry, 2010, 1, 1013−1023.
34.J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang, Y. Cao, High-efficiency electrophosphorescent fluorene-alt-carbazole copolymers N-grafted with cyclometalated Ir complexes. Macromolecules, 2005, 38, 4072−4080.
35.G.-S. Liou, N.-K. Huang, Y.-L. Yang, New soluble triphenylamine-based amorphous aromatic polyamides for high performance blue-emitting hole-transporting and anodically electrochromic materials. Polymer, 2006, 47, 7013−7020.
36.J. Grazulevicius, Charge-transporting polymers and molecular glasses for optoelectronic applications. Polymers for Advanced Technologies, 2006, 17, 694−696.
37.T M. H. Tsai, H. W. Lin, H. C. Su, T. H. Ke, C. C. Wu, F. C. Fang, Y. L. Liao, K. T. Wong, C. I. Wu, Highly efficient organic blue electrophosphorescent devices based on 3,6‐bis (triphenylsilyl) carbazole as the host material. Advanced Materials, 2006, 18, 1216−1220.
38.H.-M. Wang, S.-H. Hsiao, Enhancement of redox stability and electrochromic performance of aromatic polyamides by incorporation of (3,6-dimethoxycarbazol-9-yl)-triphenylamine units. Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 272−286.
39.C.-W. Chang, G.-S. Liou, Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N, N, N′, N′-tetraphenyl-p-phenylenediamine derivatives. Journal of Materials Chemistry, 2008, 18, 5638−5646.
40.S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, Y.-J. Lee, Synthesis and characterization of electrochromic poly(amide-imide)s based on the diimide-diacid from 4,4′-diamino-4″-methoxytriphenylamine and trimellitic anhydride. European Polymer Journal, 2010, 46, 1355−1366.


電子全文 電子全文(網際網路公開日期:20250809)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊