|
1.(a) P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and Applications; VCH: Weinheim, Germany, 1995; (b) P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007. 2.N. Kobayashi, S. Miura, M. Nishimura, H. Urano, Organic electrochromism for a new color electronic paper. Solar Energy Materials and Solar Cells, 2008, 92, 136−139. 3.R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18. 4.A.M. Osterholm, D.E. Shen, J.A. Kerszulis, R.H. Bulloch, M. Kuepfert, A.L. Dyer, J.R. Reynolds, Four shades of brown: Tuning of electrochromic polymer blends toward high-contrast eyewear. ACS applied materials & interfaces, 2015, 7, 1413−1421. 5.R. Baetens, B.P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar energy materials and solar cells, 2010, 94, 87−105. 6.C.G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1−38. 7.Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P.S. Lee, Y. Long, Smart windows: electro‐, thermo‐, mechano‐, photochromics, and beyond. Advanced Energy Materials, 2019, 9, 1902066. 8.N.R. Lynam, Electrochromic Automotive Day/Night Mirrors. SAE Transactions, 1987, 96, 891−899. 9.H. Yu, S. Shao, L. Yan, H. Meng, Y. He, C. Yao, P. Xu, X. Zhang, W. Hu, W. Huang, Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016, 4, 2269−2273. 10.S. Beaupre, A. C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells base on poly(2,7-carbazole) derivatives for adaptive camouflage. Chemistry of Materials, 2009, 21, 1504−1513. 11.P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Materials today, 2016, 19, 394−402. 12.Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji, H. Qu, N. Li, J. Zhao, Y. Li, Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Science China Chemistry, 2017, 60, 13−37. 13.L. Beverina, G. Pagani, M. Sassi, Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach. Chemical Communications, 2014, 50, 5413−5430. 14.D. T. Gillaspie, R. C. Tenent, A. C. Dillon, Metal-oxide films for electrochromic applications: present technology and future directions. Journal of Materials Chemistry, 2010, 20, 9585−9592. 15.M. Higuchi, Electrochromic organic-metallic hybrid polymers: fundamentals and device applications. Polymer journal, 2009, 41, 511−520. 16.Z.-J. Li, J.-Y. Shao, Y.-W. Zhong, Near-infrared and two-wavelength electrochromism based on nanocrystalline TiO2 films functionalized with Ruthenium-amine conjugated complexes. Inorganic Chemistry, 2017, 56, 8538−8546. 17.P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chemical reviews, 2010, 110, 268−320. 18.W. T. Neo, Q. Ye, S.-J. Chua, J. Xu, Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. Journal of Materials Chemistry C, 2016, 4, 7364−7376. 19.L. Beverina, G. A. Pagani, M. Sassi, Multichromophoric electrochromic polymers: color tuning of conjugated polymers through the side chain functionalization approach. Chemical Communications, 2014, 50, 5413−5430. 20.H. Yang, Kevlar Aramid Fiber; Wiley: Chichester, UK, 1993 21.J. M. García, F. C. García, F. Serna, J. L. de la Peña, High-performance aromatic polyamides. Progress in Polymer Science, 2010, 35, 623−686. 22.J. P. Chen, A. Natansohn, Synthesis and characterization of novel carbazole-containing soluble polyimides. Macromolecules, 1999, 32, 3171−3177. 23.G.-S. Liou, S.-H. Hsiao, N.-K. Huang, Y.-L. Yang, Synthesis, photophysical, and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials. Macromolecules, 2006, 39, 5337−5346. 24.S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38, 307−316. 25.S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel electrochromic aromatic poly(amine-amide-imide)s with pendent triphenylamine structures. Polymer, 2005, 46, 5939−5948. 26.G.-S. Liou, S.-H. Hsiao, T.-H. Su, Synthesis, luminescence and electrochromism of aromatic poly(amine-amide)s with pendent triphenylamine moieties. Journal of Materials Chemistry, 2005, 15, 1812−1820. 27.G.-S. Liou, H.-Y. Lin, Electrochemical and electrochromic properties of novel aromatic poly(amine-amide)s derived from N, N′-bis (4-carboxyphenyl)-N, N′-diphenyl-1, 4-phenylenediamine. European Polymer Journal, 2006, 42, 1051−1058. 28.Y. Imai, Synthesis of polyamideimides. Polyimides Fundamentals and Applications. CRC Press, 2018, 49−70. 29.N. Yamazaki, M. Matsumoto, F. Higashi, Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. Journal of Polymer Science: Polymer Chemistry Edition, 1975, 13, 1373–1380. 30.W. Wrasidlo, J. Augl, Aromatic polyimide-co-amides. I. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1969, 7, 321−332. 31.J. L. Nieto, J. G. de la Campa, J. de Abajo, Aliphatic‐aromatic polyamide‐imides from diisocyanates, 1. 1H and 13C NMR study of polymer structure. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1982, 183, 557−569. 32.S.-H. Hsiao, C.-P. Yang, C.-W. Chen, G.-S. Liou, Synthesis and properties of novel poly(amide-imide)s containing pendent diphenylamino groups. European Polymer Journal, 2005, 41, 511−517. 33.H.-M. Wang, S.-H. Hsiao, Multicolor electrochromic poly(amide-imide)s with N, N-diphenyl-N′, N′-di-4-tert-butylphenyl-1, 4-phenylenediamine moieties. Polymer Chemistry, 2010, 1, 1013−1023. 34.J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang, Y. Cao, High-efficiency electrophosphorescent fluorene-alt-carbazole copolymers N-grafted with cyclometalated Ir complexes. Macromolecules, 2005, 38, 4072−4080. 35.G.-S. Liou, N.-K. Huang, Y.-L. Yang, New soluble triphenylamine-based amorphous aromatic polyamides for high performance blue-emitting hole-transporting and anodically electrochromic materials. Polymer, 2006, 47, 7013−7020. 36.J. Grazulevicius, Charge-transporting polymers and molecular glasses for optoelectronic applications. Polymers for Advanced Technologies, 2006, 17, 694−696. 37.T M. H. Tsai, H. W. Lin, H. C. Su, T. H. Ke, C. C. Wu, F. C. Fang, Y. L. Liao, K. T. Wong, C. I. Wu, Highly efficient organic blue electrophosphorescent devices based on 3,6‐bis (triphenylsilyl) carbazole as the host material. Advanced Materials, 2006, 18, 1216−1220. 38.H.-M. Wang, S.-H. Hsiao, Enhancement of redox stability and electrochromic performance of aromatic polyamides by incorporation of (3,6-dimethoxycarbazol-9-yl)-triphenylamine units. Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 272−286. 39.C.-W. Chang, G.-S. Liou, Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N, N, N′, N′-tetraphenyl-p-phenylenediamine derivatives. Journal of Materials Chemistry, 2008, 18, 5638−5646. 40.S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, Y.-J. Lee, Synthesis and characterization of electrochromic poly(amide-imide)s based on the diimide-diacid from 4,4′-diamino-4″-methoxytriphenylamine and trimellitic anhydride. European Polymer Journal, 2010, 46, 1355−1366.
|