跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑞恩
研究生(外文):CHANG,JUI-EN
論文名稱:結合微奈米氣泡及生物工法處理三氯乙烯土壤地下水污染
論文名稱(外文):Combined with micro-nano bubbles and biological treatment to treat trichloroethylene soil groundwater pollution
指導教授:曾昭衡曾昭衡引用關係陳映竹陳映竹引用關係
指導教授(外文):TSENG,CHAO-HENGCHEN,YING-CHU
口試委員:曾昭衡陳映竹潘述元
口試委員(外文):TSENG,CHAO-HENGCHEN,YING-CHUPAN,SHU-YUAN
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:91
中文關鍵詞:三氯乙烯微氣泡生物處理曝氣臭氧化
外文關鍵詞:TrichlorethyleneMicrobubbleBiological TreatmentAerationOzonation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
三氯乙烯 (Trichloroethylene, TCE) 是一種常見的土壤地下水污染物質,其屬於重質非水相污染物且不易揮發而殘留於土壤地下水中,傳統整治TCE污染場址多採用氣提法、生物處理技術或者活性氧化法。然而適合生物處理之市售生物基質選擇不多;氣提法需要後續防治處理以避免二次環境污染。為克服前述問題,本研究設計結合生物處理及微奈米氣泡(MNB)兩階段式處理系統,於不同的污染濃度之地下水/土壤地下水進行批次實驗,使用名為轉移能量元素(Transfer Energy Elemen,TEE)基質為合作研究團隊提供,並提升氣泡處理等級至微奈米等級,探討最佳削減TCE污染之程序,最後以二階臭氧反應動力學模擬TCE之臭氧化的反應變化率。本研究結果發現,在含氯污染地下水中使用0.7%TEE之純生物處理,經30天後,能將TCE污染削減剩原污染濃度之59%,而加入0.5%TEE能夠去除含氯污染土壤地下水環境約62%TCE,為該批次試驗最適加入量。含氯污染水環境使用1 L/min臭氧微奈米氣泡處理180分鐘後能降低66%之TCE,後續生物處理及微奈米氣泡技術管柱實驗中發現,微奈米氣泡具備停滯時間長、傳質效率佳且內部壓高及更小等級的氣泡粒徑等特性,可以釋放強氧化能力的氫氧自由基並增加臭氧在水中的停留時間,水中臭氧濃度可達8 ppm,這解決了臭氧在水中無法長時間停留的問題,且氧化還原電位也達到900 mV具有極高氧化能力,而臭氧與水發生反應也能產生大量氫氧自由基這使得臭氧化在水中具備實現的可能,最終含氯土壤地下水中TCE去除率也達到84%良好效率。
Trichloroethylene (TCE) is a common soil and groundwater contaminant, belonging to the category of dense non-aqueous phase pollutants that are not easily volatile and persist in the soil and groundwater. Traditional remediation methods for TCE contamination sites often involve methods such as vapor extraction, bioremediation, or advanced oxidation processes. However, there are limited commercially available bio-based substrates suitable for bioremediation, and vapor extraction requires subsequent treatment to avoid secondary environmental pollution. To overcome these issues, this study proposes a two-stage treatment system combining bioremediation and micro-nano bubbles (MNB) for batch experiments using groundwater/soil groundwater with different contamination concentrations. A cooperative research team provided a substrate called Transfer Energy Element (TEE), which enhances the bubble treatment to the micro-nano scale. The study aims to investigate the optimal reduction procedure for TCE contamination and simulate the reaction rate of TCE oxidation by ozone using second-order reaction kinetics.

The results of this study showed that using pure bioremediation with 0.7% TEE in chlorinated contaminated groundwater could reduce TCE contamination by 59% after 30 days. Adding 0.5% TEE could remove approximately 62% of TCE in chlorinated contaminated soil groundwater, which was the optimal dosage for that batch experiment. In chlorinated contaminated water, ozone micro-nano bubble treatment at a flow rate of 1 L/min for 180 minutes reduced TCE by 66%. Subsequent column experiments using bioremediation and micro-nano bubble technology revealed that micro-nano bubbles exhibited long residence time, efficient mass transfer, higher internal pressure, and smaller bubble sizes. These characteristics facilitated the release of highly oxidative hydroxyl radicals and increased the residence time of ozone in water. The ozone concentration in water reached 8 ppm, solving the issue of ozone's inability to stay in water for an extended period. Furthermore, the oxidation-reduction potential reached 900 mV, indicating high oxidation capacity. The reaction between ozone and water also generated a large number of hydroxyl radicals, making ozone oxidation in water feasible. Ultimately, the removal efficiency of TCE in chlorinated soil groundwater reached 84%, demonstrating good effectiveness.

摘 要 I
ABSTRACT II
致 謝 IV
目 錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 CAHS 污染及概況 4
2.1.1 CAHs 概述 4
2.1.2三氯乙烯概述 8
2.1.3 含氯揮發性有機污染去除技術 8
2.2 微奈米氣泡(MNB)性質及其應用 10
2.2.1微奈 米氣泡概述 10
2.2.2 微奈米氣泡(MNB)產生氫氧自由基(˙OH) 12
2.2.3 臭氧微奈米氣泡(MNB)去除污染物 13
2.2.4 臭氧反應動力學 15
2.2.5 臭氧MNB及曝氣MNB技術污染物處理案例 17
2.3 生物處理方法及應用 19
2.3.1生物處理概述 19
2.3.2 生物處理反應途徑 19
2.3.3 好氧共代謝 (aerobic cometabolism , AC) 19
2.3.4 氧化性脫氯 (oxidative dechlorination) 20
第三章 研究方法 22
3.1 研究架構 22
3.2 實驗背景與設備 23
3.2.1實驗背景 23
3.2.2 實驗設備 24
3.3 實驗方法 26
3.3.1 試驗組合 26
3.4 生物處理方法 27
3.4.1 生物處理(TEE)環境建置 27
3.4.2 TEE基質藥量試驗 28
3.5 微奈米氣泡開放反應槽實驗 30
3.6兩階段管柱模擬試驗 32
3.7水中溶氧測定 33
3.8地下水性質分析 34
3.8.1 氯離子濃度測定 34
3.8.2 氫離子濃度測定 35
3.8.3氧化還原電位測定 36
3.8.4水中臭氧濃度測定 37
3.8.5 水中導電度測定 37
3.9土壤性質分析 38
3.9.1土壤SEM-EDX分析 38
3.9.2土壤組成分析(XRF/XRD)、篩分析 39
3.10氣泡粒徑分析 40
3.11 CAHS污染物測定方法 41
3.11.1 三氯乙烯、二氯乙烯及氯乙烯濃度測定 41
3.12 實驗儀器、藥劑與設備 43
第四章 結果與討論 55
4.1土壤性質分析 55
4.1.1 土壤篩分析 55
4.1.2 土壤組成分析 56
4.2開放反應槽微奈米氣泡批次實驗 58
4.2.1空氣微奈米氣泡(Air-MNB)試驗 58
4.2.2 臭氧微奈米氣泡(O3-MNB)試驗 59
4.2.3水中臭氧濃度及ORP 62
4.2.4臭氧反應動力學 63
4.3管柱模擬試驗 66
4.3.1 瓶杯試驗-含氯污染地下水環境 67
4.3.2 瓶杯試驗-含氯污染土壤地下水環境 71
4.3.3 瓶杯試驗-pH、EC 75
4.3.4兩階段模擬管柱試驗 77
第五章 結論與建議 82
5.1 結 論 82
5.2 建 議 83
參考文獻 84
附錄一: 儀器校正報告書 90
附錄一 IC離子層析儀-氯離子檢量線報告 91


Ashutosh Agarwal, Wun Jern Ng, Yu Liu , Principle and applications of microbubble and nanobubble technology for water treatment , Chemosphere , Ashutosh Agarwal, Wun Jern Ng, Yu Liu
J.C. Achar, G. Nam, J. Jung, H. , Microbubble ozonation of the antioxidant butylated hydroxytoluene: degradation kinetics and toxicity reduction , Environ. Res., 186 (2020), p. 109496
J.C. Achar, G. Nam, J. Jung, H. Klammler, M.M. Mohamed , Microbubble ozonation of the antioxidant butylated hydroxytoluene: degradation kinetics and toxicity reduction , Environ. Res., 186 (2020), p. 109496
Ignazio Allegretta a, Stijn Legrand b c, Matthias Alfeld d, Concetta Eliana Gattullo a, Carlo Porfido a, Matteo Spagnuolo a, Koen Janssens b, Roberto Terzano a , SEM-EDX hyperspectral data analysis for the study of soil aggregates , Geoderma , Volume 406, 15 January 2022, 115540
Stroo H.F. , In situ remediation of chlorinated solvent plumes. , Ward C.H., 2010.
A. Böhme , Ozone technology of German industrial enterprises , Ozone Sci Eng, 21 (1999), pp. 163-176
P.I. Beamer, C.E. Luik, L. Abrell, S. Campos, M.E. Martínez, A.E. Sáez , Concentration of trichloroethylene in breast milk and household water from Nogales, Arizona , Environ Sci Technol, 46 (2012), pp. 9055-9061
P.I. Beamer, C.E. Luik, L. Abrell, S. Campos, M.E. Martínez, A.E. Sáez , Concentration of trichloroethylene in breast milk and household water from Nogales, Arizona , Environ Sci Technol, 46 (2012), pp. 9055-9061
J.C. Chambon, P.L. Bjerg, C. Scheutz, J. Baelum, R. Jakobsen, P.J. Binning , Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater , Biotechnol. Bioeng., 110 (1) (2013), pp. 1-23
S.-K. Chen, H.-Y. Yang, S.-R. Huang, J.-M. Hung, C.-J. Lu, M.-H. Li , Complete degradation of chlorinated ethenes and its intermediates through sequential anaerobic/aerobic biodegradation in simulated groundwater columns (complete degradation of chlorinated ethenes) , Int. J. Environ. Sci. Tec. , 17 (11) (2020), pp. 4517-4530
S.-K. Chen, H.-Y. Yang, S.-R. Huang, J.-M. Hung, C.-J. Lu, M.-H. Liu , Complete degradation of chlorinated ethenes and its intermediates through sequential anaerobic/aerobic biodegradation in simulated groundwater columns (complete degradation of chlorinated ethenes) , Int. J. Environ. Sci. Tec., 17 (11) (2020), pp. 4517-4530
D. Frascari, G. Zanaroli, A.S. Danko , In situ aerobic cometabolism of chlorinated solvents: a review , J. Hazard. Mater. , 283 (2015), pp. 382-399
D. Frascari, G. Zanaroli, A.S. Danko , In situ aerobic cometabolism of chlorinated solvents: a review , J. Hazard. Mater., 283 (2015), pp. 382-399
D. Frascari, M. Cappelletti, S. Fedi, D. Zannoni, M. Nocentini, D. Pinelli , 1,1,2,2-Tetrachloroethane aerobic cometabolic biodegradation in slurry and soil-free bioreactors: A kinetic study , Biochem. Eng. J., 52 (1) (2010), pp. 55-64
L. Fiedler , Engineered approaches to in situ bioremediation of chlorinated solvents: fundamentals and field applications , Eur. Psychiat., 29 (2000), pp. 1-144
Taotao Fu a b, Youguang Ma a, Denis Funfschilling b, Huai Z. Li b , Bubble formation and breakup mechanism in a microfluidic flow-focusing device , Chemical Engineering Science , Volume 64, Issue 10, 15 May 2009, Pages 2392-2400
A. Grostern, E.A. Edwards , A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes , Appl Environ Microbiol, 72 (2006), pp. 7849-7856
F. Geering , Ozone application: the state of the art in Switzerland , Ozone Sci Eng, 21 (1999), pp. 187-200
J.W. Gander, G.F. Parkin, M.M. Scherer , Kinetics of 1,1,1-trichloroethane transformation by iron sulfide and a methanogenic consortium , Environ Sci Technol, 36 (2002), pp. 4540-4546
J.W. Gander, G.F. Parkin, M.M. Scherer , Kinetics of 1,1,1-trichloroethane transformation by iron sulfide and a methanogenic consortium , Environ Sci Technol, 36 (2002), pp. 4540-4546
M. Ghassemi, A. Shahidian , Nano and Bio Heat Transfer and Fluid Flow , Academic Press, an imprint of Elsevier, London (2017)
Binbin Huang , Chao Lei , Chaohai Wei , Guangming Zeng , Chlorinated volatile organic compounds (Cl-VOCs) in environment — sources, potential human health impacts, and current remediation technologies , Environment International , Volume 71, October 2014, Pages 118-138.
B. Huang, C. Lei, C. Wei, G. Zeng , Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies , Environ. Int., 71 (2014), pp. 118-138
L. Hu, Z. Xia , Application of ozone micro-nano-bubbles to groundwater remediation , J. Hazard. Mater., 342 (2018), pp. 446-453
L. Hu, Z. Xia , Application of ozone micro-nano-bubbles to groundwater remediation , J.
Hazard Mater., 342 (2018), pp. 446-453
P. Höhener, V. Ponsin , In situ vadose zone bioremediation , Curr. Opin. Biotech., 27 (2014), pp. 1-7
Sabeera Haris , Xiaobin Qiu, Harald Klammler, Mohamed M.A. Mohamed , The use of micro-nano bubbles in groundwater remediation: A comprehensive review , Groundwater for Sustainable Development , Volume 11, October 2020, 100463
S.M. Henry, C.H. Hardcastle, S.D. Warner , In chlorinated solvent and DNAPL remediation , ACS symposium series, American Chemical Society, Washington, DC (2002)
A. Jabesa, P. Ghosh , Removal of diethyl phthalate from water by ozone microbubbles in a pilot plant , J. Environ. Manage., 180 (2016), pp. 476-484
B.-E. Jugder, H. Ertan, M. Lee, M. Manefield, C.P. Marquis , Reductive dehalogenases come of age in biological destruction of organohalides , Trends Biotechnol., 33 (10) (2015), pp. 595-610
Hoigné J. , Chemistry of aqueous ozone, and transformation of pollutants by ozonation and advanced oxidation processes. In: J. Hubrec, editor. The handbook of environmental chemistry quality and treatment of drinking water. Berlin: Springer, 1998.
J. Jesus, D. Frascari, T. Pozdniakova, A.S. Danko , Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review , J. Hazard. Mater., 309 (2016), pp. 37-52
D. Kim, J. Han , Remediation of copper contaminated soils using water containing hydrogen nanobubbles , Appl. Sci., 10 (2020), p. 2185
H. Kwon, M.M. Mohamed, M.D. Annable, H. Kim , Remediation of NAPL-contaminated porous media using micro-nano ozone bubbles: bench-scale experiments , J. Contam. Hydrol., 228 (2020), p. 103563
J. Kruithof, W. Masschelein , State of the art of the application of ozonation in BENELUX drinking water treatment , Ozone Sci Eng, 21 (1999), pp. 139-152
K.M. Kalumuck, G.L. Chahine , The use of cavitating jets to oxidize organic compounds in water , J. Fluid. Eng. T. ASME, 122 (2000), pp. 465-470
S. Khuntia, S.K. Majumder, P. Ghosh , Oxidation of As(III) to As(V) using ozone microbubbles , Chemosphere, 97 (2014), pp. 120-124
C. Lourencetti, J.O. Grimalt, E. Marco, P. Fernandez, L. Font-Ribera, C.M. , Trihalomethanes in chlorine and bromine disinfected swimming pools: air–water
C. Liu, Y. Tang , Application research of micro and nano bubbles in water pollution control , E3S Web Conf., 136 (2019), p. 06028
E. Lynge, A. Anttila, K. Hemminki , Organic solvents and cancer , Cancer Causes Control, 8 (3) (1997), pp. 406-419
H. Li, L. Hu, Z. Xia, Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles, Materials (Basel), 6 (9) (2013), pp. 3676-3687.
L.H. Lash, J.C. Parker , Hepatic and renal toxicities associated with perchloroethylene , Pharmacol Rev, 53 (2) (2001), pp. 177-208
P. Li, M. Takahashi, K. Chiba , Enhanced free-radical generation by shrinking microbubbles using a copper catalyst , Chemosphere, 77 (2009), pp. 1157-1160
P. Li, M. Takahashi, K. Chiba , Enhanced free-radical generation by shrinking
G. Malaguarnera, E. Cataudella, M. Giordano, G. Nunnari, G. Chisari, M. Malaguarnera , Toxic hepatitis in occupational exposure to solvents , World J Gastroenterol, 18 (22) (2012), pp. 2756-2766
I. Nijenhuis, K. Kuntze , Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies , Curr. Opin. Biotech., 38 (2016), pp. 33-38
A.L. Polasko, A. Zulli, P.B. G dalanga, P. Pornwongthong, S. Mahendra , A mixed microbial community for the biodegradation of chlorinated ethenes and 1,4-dioxane , Environ. Sci. Tech. Let. , 6 (1) (2018), pp. 49-54
R.E. Richardson , Genomic insights into organohalide respiration , Curr. Opin. Biotech., 24 (3) (2013), pp. 498-505
R.E. Richardson , Genomic insights into organohalide respiration , Curr. Opin. Biotech., 24 (3) (2013), pp. 498-505
Z. Sun, F. Xia, Z. Lou, X. Chen, N. Zhu, H. Yuan, Y. Shen , Innovative process for total petroleum hydrocarbons reduction on oil refinery sludge through microbubble ozonation , J. Clean. Prod., 256 (2020), p. 120337
C.S. Scott, J. Jinot , Trichloroethylene and cancer: systematic and quantitative review of epidemiologic evidence for identifying hazards , Int J Environ Res Public Health, 8 (2011), pp. 4238-4272
J. Staehelin, J. Hoigné , Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions , Environ Sci Technol, 19 (1985), pp. 1206-1213
Marwa Sakr , Mohamed M. Mohamed , Munjed A. Maraqa , Mohamed A. Hamouda , Ashraf Aly Hassan , Jafar Ali , Jinho Jung , Alexandria Engineering Journal , Volume 61, Issue 8, August 2022, Pages 6591-6612
M. Sillanpää, M. Shestakova , Chapter 2- Electrochemical Water Treatment Methods- Fundamentals, Methods and Full-Scale Applications, 2017
M. Sivakumar, A.B. Pandit , Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique , Ultrason. Sonochem., 9 (2002), pp. 123-131
Marwa Sakr , Mohamed M. Mohamed , Munjed A. Maraqa , Mohamed A. Hamouda , Ashraf Aly Hassan , Jafar Ali , Jinho Jung , A critical review of the recent developments in micro–nano bubbles applications for domestic and industrial wastewater treatment , Alexandria Engineering Journal , Volume 61, Issue 8, August 2022, Pages 6591-6612
Nyoman Suwartha , Destrianti Syamzida , Cindy Rianti Priadi , Setyo Sarwanto Moersidik , Firdaus Ali , Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes, Heliyon, Volume 6, Issue 4, April 2020, e03748.
A. Tiehm, K.R. Schmidt , Sequential anaerobic/aerobic biodegradation of chloroethenes–aspects of field application , Curr. Opin. Biotech. , 22 (3) (2011), pp. 415-421
A. Tiehm, K.R. Schmidt , Sequential anaerobic/aerobic biodegradation of chloroethenes–aspects of field application , Curr. Opin. Biotech., 22 (3) (2011), pp. 415-421
Marco Tammaro , Antonio Salluzzo , Gianfelice Romano , Amedeo Lancia , Comparative evaluation of ozonation and stripping methods to treat contaminated groundwater by trichloroethylene. Assessment of effects on the other matrix components , Journal of Environmental Chemical Engineering , Volume 2, Issue 2, June 2014, Pages 943-951
N. Thiriat, H. Paulus, B. Le Bot, P. Glorennec , Exposure to inhaled THM: comparison of continuous and event-specific exposure assessment for epidemiologic purposes , Environ Int, 35 (2009), pp. 1086-1089.
Tatek Temesgen , Thi Thuy Bui , Mooyoung Han , Tschung-il Kim , Hyunju Park , Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review , Advances in Colloid and Interface Science , Volume 246, August 2017, Pages 40-51.
Truex, M.J., Vangelas, K., Looney, B.B., Newell, C.J., Scenarios evaluation tool for chlorinated solvent MNA, United States. Department of Energy. , 2007
C. Wu, J. Schaum , Exposure assessment of trichloroethylene , Environ Health Perspect, 108 (2000), pp. 359-363
J.J. Weatherill, S. Atashgahi, U. Schneidewind, S. Krause, S. Ullah, N. Cassidy, O. Michael, F.G. Rivett , Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential , Water Res., 128 (2018), pp. 362-382
M. Walaszek, L. Cary, G. Billon, M. Blessing, A. Bouvet-Swialkowski, M. George, J. Criquet, J.R. Mossmann , Dynamics of chlorinated aliphatic hydrocarbons in the Chalk aquifer of northern France , Sci. Total Environ. , 757 (2021), p. 143742
X. Wang, Y. Zhang , Degradation of alachlor in aqueous solution by using hydrodynamic cavitation , J. Hazard. Mater., 161 (2009), pp. 202-207
Z. Xia, L. Hu , Treatment of organics contaminated wastewater by ozone micro-nano-bubbles , Water, 11 (2019), p. 55
Z. Xia, L. Hu , Treatment of organics contaminated wastewater by ozone micro-nano-bubbles , Water, 11 (2019), p. 55
Z. Xia, L. Hu, S. Kusaba, D. Song , Remediation of TCE contaminated site by ozone micro-nano-bubbles , L. Zhan, Y. Chen, A. Bouazza (Eds.), Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1, Environmental Science and Engineering, Springer, Singapore , (2019), pp. 796-803,
Zhilin Xing, Xia Su, Xiaoping Zhang, Lijie Zhang, Tiantao Zhao ,Direct aerobic oxidation (DAO) of chlorinated aliphatic hydrocarbons: A review of key DAO bacteria, biometabolic pathways and in-situ bioremediation potential , Volume 162 , April 2022, 107165.
R. Eamrat, Y. Tsutsumi, T. Kamei, W. Khanichaidecha, T. Ito, F. Kazama , Microbubble application to enhance hydrogenotrophic denitrification for groundwater treatment , Environment and Natural Resources Journal, 18 (2020), pp. 156-165
Yamasaki, K., Sakata, K., Chuhjoh, K., Water Treatment Method and Water Treatment System , US Patent 7662288.2010
microbubbles using a copper catalyst , Chemosphere, 77 (2009), pp. 1157-1160
California Environment Protection Agency (CalEPA) , Public health goals for trichloroethylene in drinking wate.
distributions and human exposure , Environ Int, 45 (2012), pp. 59-67

電子全文 電子全文(網際網路公開日期:20280812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top