跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/13 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡佑庭
研究生(外文):JIAN, YOU-TING
論文名稱:以斜向沉積銀於聚合物光柵為超穎表面並探討表面電漿之傳播特性
論文名稱(外文):Surface plasmon propagation on a metasurface prepared by obliquely depositing silver upon a polymer grating
指導教授:任貽均
指導教授(外文):JEN, YI-JUN
口試委員:劉旻忠游智仁廖博輝任貽均
口試委員(外文):LIU, MING-CHUNGYU, CHIH-JENLIAO, BO-HUEIJEN, YI-JUN
口試日期:2023-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:54
中文關鍵詞:表面電漿光柵斜向沉積等頻率曲線
外文關鍵詞:Surface plasmonGratingOblique angle depositionIso-frequency curve
相關次數:
  • 被引用被引用:1
  • 點閱點閱:60
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究採用斜向沉積銀薄膜於聚鄰苯二甲酸二烯丙酯(PDAP)製成的聚合物光柵上,形成奈米分裂管陣列,作為一個超穎表面。在垂直入射時,特定波長處的TM 偏振呈現高反射帶,產生TM偏振的反射峰現象是由於被銀所包覆的光柵背脊內部的局部磁場增強所導致。為了理解金屬包覆於超穎表面上的傳播情況,採用有限差分時域(FDTD)方法來分析經由光柵上方的偶極子源激發出的TM模式與TE模式的表面波傳播,藉由超穎表面上的相關等頻率曲線揭示了表面電漿波的傳播特性,並發現其平面內的各向異性特性取決於波長與銀的形貌而變化。在 TM 反射峰附近的波長範圍內,等頻率曲線對垂直於光柵的波向量的依賴性較低,展現出表面電漿無繞射的傳播特性。另一方面,金屬包覆超穎表面支持遠距離傳播特性。本研究還探討了近場磁場對表面電漿性質的作用。
In this work, a polymer grating made of poly(diallyl phthalate) (PDAP) was obliquely deposited with silver to be a split nanotube array as a metasurface to exhibit a TM polarized high reflectance band. The TM-polarized reflection peak is due to the localized magnetic field enhancement within the ridge surrounding by coated silver. In order to understand the propagation on the metal coated metasurface. The finite-difference time-domain (FDTD) method is adopted to analyze the propagation of TM mode and TE mode surface waves from a dipole source above the grating. The associated iso-frequency curve on the surface reveals the propagation property of surface plasmon wave. The in-plane anisotropic property is found to be dependent on wavelength and the morphology of coated silver. At wavelengths around the TM reflection peak, the iso-frequency curve is low dependent on the wave vector component perpendicular to the gratings to show diffractionless propagation of surface plasmon. On the other hand, the metal coated metasurface supports long range propagation. The role of near field magnetic field on the surface plasmon property is also investigated in this study.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 超穎材料介紹 1
1.2 雙曲超穎材料 1
1.2.1 雙曲超穎材料實際應用 1
1.3 超穎材料的傳播損耗問題 2
1.4 雙曲超穎表面 2
1.5 表面電漿共振 5
1.6 近期超穎表面的發展 6
1.6.1 奈米結構凡得瓦力材料之中紅外雙曲超穎表面 6
1.6.2 混和脊寬金屬光柵之超穎表面 7
1.6.3 金屬奈米線陣列之超穎表面 8
1.7 TM與TE傳播表面電漿共振波 9
1.8 研究動機 10
第二章 原理 12
2.1 斜向沉積技術 12
2.2 薄膜生長理論 13
2.3 表面電漿場 14
2.4 傅立葉轉換 19
2.5 時域有限差分法 20
第三章 實驗製程與量測介紹 21
3.1 真空鍍膜系統 21
3.1.1 抽真空系統 21
3.1.2 電子束蒸鍍系統 22
3.1.3 載台旋轉系統 22
3.1.4 石英膜厚監控系統 22
3.2 基板準備與實驗流程 22
3.2.1 奈米壓印光柵基板 22
3.2.2 實驗流程 23
3.2.3 HITACHI UH-4150商用光譜儀 24
3.2.4 高解析熱場發射掃描式電子顯微鏡 24
3.3 模擬軟體 24
第四章 實驗結果與討論 25
4.1 光柵基板幾何參數 25
4.2 以斜向沉積50°鍍製銀奈米分裂管 26
4.3 交錯式斜向沉積50°鍍製銀奈米分裂管 27
4.4 銀奈米分裂管之光學特性研究 28
4.4.1 單層銀奈米分裂管光學特性研究 29
4.4.2 雙層銀奈米分裂管光學特性研究 30
4.5 反磁共振現象 31
4.6 銀奈米分裂管超穎表面之光學特性分析 34
4.6.1 超穎表面之表面電漿共振傳播 34
4.6.2 超穎表面之橫截面電磁場分析 36
4.7 等頻率曲線的繪製與分析 37
4.8 隨波長電場分布波前與等頻率曲線的分析 39
4.8.1 隨波長TM模式下電場分布波前與等頻率曲線變化 39
4.8.2 隨波長TE模式下電場分布波前與等頻率曲線變化 43
4.9 TM與TE模式遠距離傳播表面電漿分析 47
4.9.1 TM模式下隨波長橫截面電場分析 47
4.9.2 TE模式下隨波長橫截面電場分析 48
4.9.3 TM與TE模式下隨波長表面電場分布比較 49
第五章 結論 51
參考文獻 52

[1]C. M. Soukoulis, S. Linden, and M. Wegener, “Optical cloaking with metamaterials” Science 315, 47 (2007).
[2]S. Xiao et al. “Loss-free and active optical negative-index metamaterials ” Nature 466, 735 (2010).
[3]Yang Li et al. “On-chip zero-index metamaterials” Nat Photonics 9(11), 738-742 (2015).
[4]J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields” Science 312, 1780-1782 (2006).
[5]W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials” Nat Photonics 1, 224-227 (2007).
[6]I. Liberal and N. Engheta, “Near-zero refractive index photonics” Nat Photonics 11, 149 (2017).
[7]A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials” Nat Photonics 7, 948 (2013).
[8]Xiaodong Yang. et al. “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws” Nat Photonics 6, 450(2012).
[9]Liu, Z. W., Lee, H., Xiong, Y., Sun, C. & Zhang, X, “Far-field optical hyperlens magnifying sub-diffraction-limited objects” Science 315, 1686 (2007).
[10]Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G and Zhang X, “Three-dimensional optical metamaterial with a negative refractive index” Nature 455, 376–9 (2008).
[11]Y. Liu, X. Zhang, “Metasurfaces for manipulating surface plasmons” Appl. Phys. Lett. 103, 141101 (2013).
[12]Petersen, J., Volz, J. & Rauschenbeutel, A, “Metasurfaces for manipulating surface plasmons” Science. 346, 67-71 (2014).
[13]High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, De Leon N P, Lukin M D and Park H, “Visible-frequency hyperbolic metasurface” Nature 522, 192–6 (2015).
[14]E. Hutter, and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonanc” Adv. Mater. 16, (2004).
[15]Zhong, Y., Malagari, S.D., Hamilton, T., Wasserman, D. “Review of mid-infrared plasmonic materials” Journal of Nanophotonics. 9, 093791 (2015).
[16]Li, P. et al. “Infrared hyperbolic metasurface based on nanostructured van der Waals materials” Science 359, 892–896 (2018).
[17]Y. Shi, R. Yang, C. Dai, C. Wan, S. Wan, Z. Li,J, “Broadband diffraction-free on-chip propagation along hybrid metallic grating metasurfaces in the visible frequency” Appl. Phys. 54, 044001 (2020).
[18]Chun-Ho Lee, Min-Kyo Seo, “Broadband two-dimensional hyperbolic metasurface for on-chip photonic device applications” Optics Letters. 45, 2502-2505 (2020).
[19]Lingbo Xia. et al, “Simultaneous TE and TM designer surface plasmon supported by bianisotropic metamaterials with positive permittivity and permeability” Nanophotonics. 8, 1357–1362 (2019).
[20]羅興豪, “斜向沉積銀奈米分裂管陣列之等效光學參數與應用”, 國立臺北科技大學光電工程所, 碩士論文(2022)
[21]Yi-Jun Jen, Akhlesh Lakhtakia, Ching-Wei Yu, Yu-Hsiung Wang, “Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver” J. Vac. Sci. Technol. A 28(5), 1078–1083 (2010).
[22]S Liedtke, Ch Grüner, A Lotnyk and B Rauschenbach, “Glancing angle deposition of sculptured thin metal films at room temperature” Nanotechnology 28, 385604 (2017).
[23]I. Petrov et al, “Microstructural evolution during film growth” Journal of Vacuum Science & Technology A 21, S117 (2003)
[24]B. Movchan and A. Demchishin, “Structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide in vacuum” Fiz. Metal. Metalloved 28, 653-60 (1969).
[25]A. Archambault, T. V. Teperik, F. Marquier, J. J. Greffet, “Surface plasmon Fourier optics” PHYSICAL REVIEW B 79, 195414 (2009).
[26]M. Rahman, “Applications of Fourier Transforms to Generalized Functions” USA, WIT Press, (2011).
[27]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat AP-14, 302-307, (1966).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊