跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/25 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Muhammad Ahsan Fatwaddin Shodiq
研究生(外文):SHODIQ, MUHAMMAD
論文名稱:使用自動重疊區域識別技術之高效大規模3D地圖拼接算法
論文名稱(外文):An Efficient Large-Scale 3D Map Stitching Algorithm using Automatic Overlapping Area Identification
指導教授:林郁修林郁修引用關係
指導教授(外文):LIN, YU-HSIU
口試委員:林顯易蕭俊祥林郁修
口試委員(外文):LIN, HSIEN-ISHAW, JIN-SIANGLIN, YU-HSIU
口試日期:2023-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:64
中文關鍵詞:3D map stitchingPoint cloud mapDBSCANTemplate matchingBinary search
外文關鍵詞:3D map stitchingPoint cloud mapDBSCANTemplate matchingBinary search
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Abstract i
Acknowledgement iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Statement and Scope 4
1.3 Contributions of the Research 5
1.4 Structure of the Thesis 6
Chapter 2 Literature Review 7
2.1 Application in 3D Map Stitching 7
2.1.1 Map-Merge-3D Integration-Based Method 8
2.2 3D Point Cloud Map 9
2.3 3D Map Clustering 10
2.4 Template Matching 10
2.5 3D Point Cloud Noise Filtering 11
2.6 Hyper-parameter Optimization 11
2.7 Summary 12
Chapter 3 Theoretical Framework 13
3.1 Map-Merge-3D Method 13
3.1.1 Keypoint Extraction 13
3.1.2 Matching Algorithm 15
3.1.3 Transformation Estimation 15
3.2 Auto-Overlapping Area Identification Method 16
3.2.1 DBSCAN 17
3.2.2 Template Mathing 19
3.2.3 Binary Search Algorithm 20
3.3 Intensity-based Filtering Method 21
3.4 Summary 21
Chapter 4 Proposed Method 22
4.1 Overview 22
4.2 Auto-Overlapping Area Identification 23
4.3 Noise Filtering 24
4.4 Clustering and Parameters Estimation 26
4.5 Map Conversion 30
4.6 Correlation Computation between Clusters 31
4.7 Parameter Optimization 32
4.8 Summary 34
Chapter 5 Experimental Results 35
5.1 Experimental Setup and 3D Maps 35
5.2 Result of Clustering and Correlation Score 35
5.3 Performance Evaluation 37
5.4 Performance Improvement 47
5.5 Additional Experiment 54
Chapter 6 Conclusions and Future Work 59
6.1 Conclusion 59
6.2 Future Work 60
REFERENCE 61
[1] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous localization and map building in large-scale cyclic environments using the atlas framework,” The International Journal of Robotics Research, vol. 23, no. 12, pp. 1113–1139, 2004.
[2] J. H ̈orner, “Automatic point clouds merging,” 2018.
[3] S. Huang, Z. Gojcic, M. Usvyatsov, A. Wieser, and K. Schindler, “Predator: Registration of 3d point clouds with low overlap,” in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2021, pp. 4267–4276.
[4] Y. He, L. Ma, Z. Jiang, Y. Tang, and G. Xing, “Vi-eye: Semantic-based 3d point cloud registration for infrastructure-assisted autonomous driving,” in Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, 2021, pp. 573–586.
[5] M. Jiang, Y. Wu, T. Zhao, Z. Zhao, and C. Lu, “Pointsift: A sift-like network module for 3d point cloud semantic segmentation,” arXiv preprint arXiv:1807.00652, 2018.
[6] X. Xu, L. Zhang, J. Yang, et al., “Lidar–camera calibration method based on ranging statistical characteristics and improved ransac algorithm,” Robotics and Autonomous Systems, vol. 141, p. 103 776, 2021.
[7] X. Shi, T. Liu, and X. Han, “Improved iterative closest point (icp) 3d point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration,” International Journal of Remote Sensing, vol. 41, no. 8, pp. 3197–3220, 2020.
[8] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional lidar-based system for long-term and wide-area people behavior measurement,” International Journal of Advanced Robotic Systems, vol. 16, no. 2, p. 1 729 881 419 841 532, 2019.
[9] M. Drwiega, “3d maps integration based on overlapping regions matching,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 15, 2021.
[10] Z. Zhang, G. Chen, X. Wang, and M. Shu, “Ddrnet: Fast point cloud registration network for large-scale scenes,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 175, pp. 184–198, 2021. 61
[11] Y. He, J. Yang, X. Hou, S. Pang, and J. Chen, “Icp registration with dca descriptor for 3d point clouds,” Optics Express, vol. 29, no. 13, pp. 20 423–20 439, 2021.
[12] Z. Zhou, C. Zhao, D. Adolfsson, et al., “Ndt-transformer: Large-scale 3d point cloud localisation using the normal distribution transform representation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2021, pp. 5654–5660.
[13] L. Sun, “Practical, fast and robust point cloud registration for scene stitching and object localization,” IEEE Access, vol. 10, pp. 3962–3978, 2022.
[14] V. Ren`o, M. Nitti, M. di Summa, R. Maglietta, and E. Stella, “Comparative analysis of multimodal feature-based 3d point cloud stitching techniques for aeronautic applications,” in 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), IEEE, 2020, pp. 398–402.
[15] J. Behley, M. Garbade, A. Milioto, et al., “Semantickitti: A dataset for semantic scene understanding of lidar sequences,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 9297–9307.
[16] S. Schwarz, M. Preda, V. Baroncini, et al., “Emerging mpeg standards for point cloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2018.
[17] S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez, and C. Wellington, “3d point cloud processing and learning for autonomous driving: Impacting map creation, localization, and perception,” IEEE Signal Processing Magazine, vol. 38, no. 1, pp. 68–86, 2020.
[18] E. Schubert and M. Gertz, “Improving the cluster structure extracted from optics plots.,” in LWDA, 2018, pp. 318–329.
[19] M. A. U. Alam, M. M. Rahman, and J. Q. Widberg, “Palmar: Towards adaptive
multi-inhabitant activity recognition in point-cloud technology,” in IEEE INFOCOM 2021-IEEE Conference on Computer Communications, IEEE, 2021, pp. 1–10. 62.
[20] C. Wang, M. Ji, J. Wang, W. Wen, T. Li, and Y. Sun, “An improved dbscan method for lidar data segmentation with automatic eps estimation,” Sensors, vol. 19, no. 1, p. 172, 2019.
[21] S. Fonseka and J. Jayasinghe, “Feature extraction and template matching algorithms classification for pcb fiducial verification,” Journal of Achievements in Materials and Manufacturing Engineering, vol. 86, no. 1, pp. 14–32, 2018.
[22] M. Hisham, S. N. Yaakob, R. Raof, A. A. Nazren, and N. Wafi, “Template matching using sum of squared difference and normalized cross correlation,” in 2015 IEEE student conference on research and development (SCOReD), IEEE, 2015, pp. 100–104.
[23] C. Lee, D. Kim, S. Hur, et al., “Visual odometry for absolute position estimation using template matching on known environment,” in 2021 18th International Conference on Ubiquitous Robots (UR), IEEE, 2021, pp. 488–493.
[24] K. Liu, W. Wang, R. Tharmarasa, J. Wang, and Y. Zuo, “Ground surface filtering of 3d point clouds based on hybrid regression technique,” IEEE Access, vol. 7, pp. 23 270–23 284, 2019.
[25] H. Balta, J. Velagic, W. Bosschaerts, G. De Cubber, and B. Siciliano, “Fast statistical outlier removal based method for large 3d point clouds of outdoor environments,” IFAC-PapersOnLine, vol. 51, no. 22, pp. 348–353, 2018.
[26] B. Xiong, W. Jiang, D. Li, and M. Qi, “Voxel grid-based fast registration of terrestrial point cloud,” Remote Sensing, vol. 13, no. 10, p. 1905, 2021.
[27] X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, “A review of algorithms for filtering the 3d point cloud,” Signal Processing: Image Communication, vol. 57, pp. 103–112, 2017.
[28] B. Shekar and G. Dagnew, “Grid search-based hyperparameter tuning and classification of microarray cancer data,” in 2019 second international conference on advanced computational and communication paradigms (ICACCP), IEEE, 2019, pp. 1–8.
[29] Y. Alparslan, E. J. Moyer, I. M. Isozaki, et al., “Towards searching efficient and accurate neural network architectures in binary classification problems,” in 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 2021, pp. 1–8. 63
[30] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, pp. 91–110, 2004.
[31] R. Dub ́e, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “Segmatch: Segment based place recognition in 3d point clouds,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 5266–5272.
[32] J.-I. Park, J. Park, and K.-S. Kim, “Fast and accurate desnowing algorithm for lidar point clouds,” IEEE Access, vol. 8, pp. 160 202–160 212, 2020.
[33] H. Chen, M. Liang, W. Liu, W. Wang, and P. X. Liu, “An approach to boundary detection for 3d point clouds based on dbscan clustering,” Pattern Recognition, vol. 124, p. 108 431, 2022.
[34] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for discovering clusters in large spatial databases with noise.,” in kdd, vol. 96, 1996, pp. 226–231.
[35] D. Liu, D. Li, M. Wang, and Z. Wang, “3d change detection using adaptive thresholds based on local point cloud density,” ISPRS International Journal of Geo Information, vol. 10, no. 3, p. 127, 2021.
[36] Y. Xu, X. Tong, and U. Stilla, “Voxel-based representation of 3d point clouds: Methods, applications, and its potential use in the construction industry,” Automation in Construction, vol. 126, p. 103 675, 2021.
[37] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited, revisited: Why and how you should (still) use dbscan,” ACM Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 2017.
[38] E. Alexiou and T. Ebrahimi, “Towards a point cloud structural similarity metric,” in 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), IEEE, 2020, pp. 1–6
電子全文 電子全文(網際網路公開日期:20250731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top