跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 06:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周俊宏
研究生(外文):CHOU, CHUN-HUNG
論文名稱:液流式鋅燃料電池控制系統之研發
論文名稱(外文):Research and Development of Liquid Flow Zinc Fuel Cell Control System
指導教授:黃國修黃國修引用關係
指導教授(外文):HUANG, KUO-HSIU
口試委員:黃國修吳建勳楊政融
口試委員(外文):HUANG, KUO-HSIUWU, CHIEN-HSUNYANG, CHENG-JUNG
口試日期:2023-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:99
中文關鍵詞:鋅空電池液流式鋅燃料電池鋅燃料電池控制系統
外文關鍵詞:Zinc-air batteryliquid flow zinc fuel cellzinc fuel cell control system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
近幾年來隨著地球環境變遷越來越劇烈,各種綠能與儲能的建設越來越多。相對應安全的能量載體也是各研究領域的重點。符合高安全性與高能量體積比的鋅金屬燃料電池,在儲能與長距離移動載具上的能源補充,有著相對的優勢。而我們實驗室的液流式燃料電池的每平方公分的電流密度由於鋅空氣電池的電流密度。目前已經有許多的論文對於鋅空氣電池的研究,偏向於電芯,空氣流道,空氣流速,電解液濃度等探討。
本研究將著重於液流式鋅燃料電池的控制系統研發,將單一電芯的電流密度,空氣流量建立Simulink的模型,模擬再不同功率需求,多串數的電芯堆疊,所輸出的功率與電堆的電壓電流數值。整合高放電速度的鋰電池,氣體氫燃料電池於控制系統的能源分配,使用氫燃料電池的SAEJ-2615靜態步階功率的驗證方式。將實際執行硬體與韌體的設計,硬體將具備電壓電流的感測器訊號輸入,外部功率元件的切換控制,CAN BUS的接口,韌體將各項參數,保護條件,功能皆使用結構式撰寫,韌體執行SIL的方式驗證硬體與韌體對於單一能源與多能源混合時,符合SAEJ-2615靜態步階功率。最後在實際商品研究開發時,修改參數值,保護值即可驗證系統,降低實際開發的時間。

In recent years, as the earth's environment has changed more and more violently, there have been more and more constructions of various green energy and energy storage. Correspondingly safe energy carriers are also the focus of various research fields. Zinc metal fuel cells with high safety and high energy volume ratio have relative advantages in energy storage and energy supplementation on long-distance mobile vehicles. And the current density per square centimeter of the flow fuel cell in our laboratory is due to the current density of the zinc-air battery. At present, there have been many papers on the research of zinc-air batteries, focusing on the battery cell, air flow channel, air flow rate, electrolyte concentration, etc.
This research will focus on the research and development of the control system of the liquid-flow zinc fuel cell. The current density and air flow of a single battery cell will be established as a Simulink model to simulate different power requirements and multiple strings of battery cells. The output power and The voltage and current values of the stack. Integrate lithium batteries with high discharge speed, gas hydrogen fuel cells in the energy distribution of the control system, and use the verification method of SAEJ-2615 static step power of hydrogen fuel cells. The design of hardware and firmware will be actually implemented. The hardware will have the sensor signal input of voltage and current, the switching control of external power components, the interface of CAN BUS, and the firmware will use the structure of various parameters, protection conditions and functions. The formula is written, and the SIL method is used to verify that the hardware and firmware comply with the SAEJ-2615 static step power when the single energy source and the multi-energy source are mixed. Finally, in the actual product research and development, modify the parameter value and protect the value to verify the system and reduce the actual development time.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
英文名詞縮寫表 xi
第一章 緒論 1
1.1引言 1
1.2文獻回顧 2
1.3研究動機 7
1.4內容大綱 7
第二章 鋅燃料電池控制模型 8
2.1鋅燃料電池系統控制架構 8
2.2鋅燃料電池系統控制模型 14
2.3鋅燃料電池系統模擬 23
第三章 鋅燃料電池管理系統 31
3.1鋅燃料電池管理系統硬體開發 31
3.2鋅燃料電池管理系統韌體開發 35
第四章 鋅燃料管理系統模擬驗證 43
4.1鋅燃料電池管理系統模擬 43
4.2鋅燃料電池管理系統複合模擬 58
4.3結果與討論 69
第五章 結論與未來展望 72
5.1結論 72
5.2未來展望 72
參考文獻 73
附錄A 系統狀態切換程式 76
附錄B 系統空氣源控制程式 79
附錄C系統保護功能程式 81
附錄D系統執行時序程式 97
附錄E系統模擬新增資訊接收程式 98

[1] 國家發展委員會(2022)。臺灣2050淨零排放路徑及策略總說明。檢自: https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811&upn=5CE3D7B70507FB38
[2] GreenPeace(2022)。為了淨零轉型、拯救氣候而轉用低碳電動車,深海採礦是必要。檢自: https://www.greenpeace.org/taiwan
[3] 巴黎協議: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement 。
[4] 行政院新聞: https://www.ey.gov.tw/Page/9277F759E41CCD91/c094fb4e-6c07-4a87-9435-fb97f11dde10 。
[5] 台灣電力股份有限公司 電力交易平台增強型動態調頻備轉容量輔助服務實施要點 總說明與說明表,中華民國111年3月31日經濟部經授能字第11100494250號函核定。
[6] 鍾宜叡 ,鋅-空氣電池電解液管理之研究,碩士論文,大葉大學車輛工程系,2006。
[7] Li, Y., Gong, M., Liang, Y., Feng, J., Kim, J.-E., Wang, H., Hong, G., Zhang, B., Dai, H. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts (2013) Nature Communications, 4, 論文編號 1805,.
[8]NXP_IEC60730_Safety_Standard_for_Household_Appliances https://www.nxp.com/products/nxp-product-information/nxp-product-programs/iec-60730-safety-standard-for-household-appliances:APIEC60730
[9] SAE J2615 Testing Performance of Fuel Cell Systems for Automotive Applications https://www.sae.org/standards/content/j2615_200501/
[10] Wentao Yu, Wenxu Shang, Peng Tan, Bin Chen, Zhen Wu, Haoran Xu, Zongping Shao, Meilin Liu and Meng Ni, “Toward a new generation of low cost, efficient, and durable metal–air flow batteries”, Royal Society of Chemistry, Journal of Materials Chemistry A 2019.
[11] Jing Fu, Zachary Paul Cano, Moon Gyu Park, Aiping Yu, Michael Fowler and Zhongwei Chen, “Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspective”, Advanced Materials, vol. 29, no. 7, 2017.
[12] Renxing Huang, Ying Lei, Dandan Zhang, Huaming Xie, Xingyong Liu, and Honghui Wang, “Facile Fabrication of Nitrogen, Phosphorus and Silicon Co-Doped Porous Carbon as an Efficient Oxygen Reduction Catalyst for Primary Zn-Air Battery”, World Scientific, vol. 14, no. 9, 2019.
[13] Woranunt Lao-atiman, Kanya Bumroongsil, Amornchai Arpornwichanop, Palang Bumroongsakulsawat, Sorin Olaru and Soorathep Kheawhom, “Model-Based Analysis of an Integrated Zinc-Air Flow Battery/Zinc Electrolyzer System”, Frontiers in Energy Research, 2019.
[14] Thangavel Sangeetha, Po-Tuan Chen, Wu-Fu Cheng, Wei-Mon Yan and K.David Huang, “Optimization of the Electrolyte Parameters and Components in Zinc Particle Fuel Cell”, Energies, vol. 12, no. 6, 2019.
[15] Keliang Wang, Cheng Liao, Wei Wang, Yu Xiao, Xiaotian Liu and Siyuan Zhao, “Physical shortcut accelerating electron transport of rechargeable zinc-air battery”, Materials Today Energy, vol. 14, 2019.
[16] Chi-yuen Hui, Chi-wai Kan, Chee-leung Mak and Kam-hong Chau, “Flexible Energy Storage System - An Introductory Review of Textile - Based Flexible Supercapacitors”, Processes, MPDI, vol. 7, no. 12, 2019.
[17] Software-in-the-Loop Simulation https://www.mathworks.com/help/ecoder/software-in-the-loop-sil-simulation.html
[18] Hardware-in-the-Loop Simulation https://www.mathworks.com/products/simulink-real-time.html
[19] Model-in-the-Loop https://www.mathworks.com/discovery/model-based-testing.html
[20] IEC62619/UL9540/UL9540A https://www.tuvsud.com/zh-tw/industries/mobility-and-automotive/automotive-and-oem/automotive-testing-solutions/battery-testing/testing-of-stationary-energy-storage-systems

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top