跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱海棠
研究生(外文):CHIU, HAI-TANG
論文名稱:萘雙亞醯胺為基底之共軛高分子光催化劑應用於二氧化碳還原反應
論文名稱(外文):Naphthalene Diimide-Based Conjugated Polymers as Photocatalysts for CO2 Photoreduction Reaction
指導教授:芮祥鵬芮祥鵬引用關係王立義
指導教授(外文):RWEI, SYANG-PENGWANG, LEE-YIH
口試委員:陳錦文芮祥鵬王立義
口試委員(外文):CHEN, CHIN-WENRWEI, SYANG-PENGWANG, LEE-YIH
口試日期:2023-06-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:58
中文關鍵詞:二氧化碳光還原有機共軛高分子光催化劑分子設計
外文關鍵詞:CO2 PhotoreductionConjugated PolymersPhotocatalystMolecular Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
近年來二氧化碳的大量排放帶來全球暖化的問題,使用光催化劑將二氧化碳轉化為化學燃料是緩解溫室效應的重要途徑之一。在眾多光催化劑之中,共軛有機高分子具有可調整的光電性質和寬廣的光吸收波長範圍等優點而受到廣泛的關注。本研究中,我使用naphthalene diimide (NDI)做為電子受體單元,bithiophene (BT)為供體單元,進行共聚合生成有機共軛高分子N2200。為了探討分子結構對於二氧化碳光催化活性的影響,進一步引入具有羧酸酯基團之側鏈butyl-pentanoate (BPO) 進行改質,將其命名為BPO-BT;然後,再使用dibenzothiophene 5,5-dioxide (DBTO)來取代BT與BPO共聚合,生成BPO-DBTO,以更進一步提升光催化活性。並透過電化學阻抗、瞬態光電流響應和時間解析光激發螢光光譜,研究羧酸酯側鏈和DBTO基團對於催化劑之光電性質的影響。
二氧化碳光化學反應的結果,說明這三種共軛高分子無需金屬助催化劑或犧牲劑的環境下,皆能轉化CO2成為單一產物CO。電化學阻抗實驗顯示N2200、BPO-BT和BPO-DBTO之界面電荷傳輸電阻分別為189.2、99.2 ohm和82.3 ohm,較小的界面電阻,有利於高分子催化劑將電子傳遞給CO2進行還原反應。另外,時間解析光激發螢光光譜顯示,以 DBTO取代BT基團,可顯著地提升激子的壽命,從0.96 ns增長至1.20 ns,讓激子有更大的機會能夠被分離並進行二氧化碳還原。因而,N2200的CO產率為4.3 μmole/g*hr,在BPO-BT和BPO-DBTO的催化系統則可分別提升產率至16.2和27.3 μmole/g*hr。實驗結果證明導入BT側鏈和DBTO基團的兩種途徑皆能有效增加二氧化碳的光還原效率。這項研究證實共軛高分子在二氧化碳光還原方面的應用潛力,並提供藉由分子結構設計來提高光催化效率的有效策略。
In recent decades, the large amount of CO2 released into atmosphere has caused serious global warming problem. The conversion of carbon dioxide into chemical fuels by photocatalysts is a promising way to alleviate the greenhouse effect. Among numerous photocatalysts, organic conjugated polymers have received a lot of attention because of their tunable photoelectronic properties and good light harvesting ability. In this work, naphthalene diimide (NDI), a strong electron-withdrawing unit, was copolymerized with bithiophene (BT), a electron-donating unit, to yield the conjugated polymer N2200. To investigate the influence of molecular structure on the polymers’ catalytic activity for the photochemical reaction of CO2, two polymers, BPO-BT and BPO-DBTO, were synthesized by anchoring two carboxylate ester groups, butyl-pentanoate (BPO), onto the NDI as side chains, and replacing the BT unit with the dibenzothiophene 5,5-dioxide (DBTO) block, respectively.
Photocatalytic CO2 reduction reactions (CO2RR) indicated that all the three polymers can effectively convert CO2 into a single product of CO without the need for co-catalyst and/or sacrificial agent. The electrochemical impedance spectroscopy measurements revealed the interfacial charge-transfer resistance of N2200, BPO-BT and BPO-DBTO were 189.2, 99.2, and 82.3 ohm, respectively. A lower resistance is beneficial for the transfer of electrons from the polymer catalyst to CO2 to induce reduction reaction. Furthermore, the time-resolved photoluminescence experiments showed that the substitution of BT with DBTO prominently reduced the exciton lifetime from 0.96 ns to 1.20 ns. As a result, the N2200 had a moderate CO production rate of 4.3 μmole/g*hr; both BPO-BT and BPO-DBTO exhibited elevated rates of 16.2 μmole/g*hr and 27.3 μmole/g*hr, respectively. This study demonstrates that the employment of conjugated polymers as the catalysts for CO2RR is a promising approach and provides a practical principle for designing highly active polymer catalysts.
摘要 i
Abstract iii
誌謝 v
圖目錄 ix
表目錄 xi
第一章 、 緒論 1
1-1 前言 1
1-2 光催化二氧化碳還原 2
1-3 光催化劑選擇 4
1-3-1 石墨型氮化碳(Graphitic carbon nitride, g-C3N4) 5
1-3-2 共軛微孔高分子(Conjugated microporous polymers, CMPs) 6
1-3-3 共軛有機骨架(Covalent Organic Frameworks, COFs) 7
1-3-4 線性共軛高分子(Liner-conjugated polymers, CPs) 8
1-4 研究動機 17
第二章 、實驗方法 18
2-1 化學試劑對照表 18
2-2 實驗儀器 20
2-2-1 紫外光/可見光分光譜儀 (UV/Vis Spectrometer) 20
2-2-2 核磁共振光譜儀 (Nuclear Magnetic Resonancespectrometer) 20
2-2-3 微波反應器 (Microwave reactor) 20
2-2-4 電化學阻抗光譜 (Electrochemical Impedance Spectroscopy, EIS) 21
2-2-5 循環伏安法 (Cyclic voltammetry, CV) 21
2-2-6 瞬態光電流響應 (Transient photocurrent responses) 21
2-2-7 時間解析光激發螢光光譜 (Time-Resolved Photoluminescence, TRPL) 22
2-3 合成步驟 23
2-3-1 2,6-dibromo-1,4,5,8-naphthalenetetracarboxylic acid dian hydride (1)的合成 23
2-3-2 5,5'-(4,9-dibromo-1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-diyl)dipentanoic acid (2)的合成 24
2-3-3 Dibutyl5,5'-(4,9-dibromo-1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-diyl)dipentanoate (3)的合成 25
2-3-4 5,5'-bis(tributylstannyl)-2,2'-bithiophene (4)的合成 26
2-3-5 Dibenzothiophene 5,5-dioxide (5)的合成 27
2-3-6 2-bromodibenzothiophene 5,5-dioxid (6)的合成 28
2-3-7 3,7-bis(tributylstannyl)dibenzo[b,d]thiophene 5,5-dioxide (7)的合成 29
2-2-8 N2200 (8)的聚合 30
2-3-9 BPO-BT (9)的聚合 31
2-3-10 BPO-DBTO (10)的聚合 32
第三章 、結果與討論 33
3-1 合成路徑分析 33
3-2 核磁共振圖譜分析 35
3-2-1 Dibutyl5,5'-(4,9-dibromo-1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-diyl)dipentanoate的結構分析與鑑定 35
3-2-2 3,7-bis(tributylstannyl)dibenzo[b,d]thiophene 5,5-dioxide的結構分析與鑑定 37
3-2-3 5,5'-bis(tributylstannyl)-2,2'-bithiophene的結構分析與鑑定 38
3-3 光學性質分析 40
3-3-1 UV-vis 光譜 40
3-3-2 氧化還原電位與能階圖 41
3-3-3 時間解析光激發螢光光譜 44
3-4 二氧化碳光還原效率 45
3-5 電化學性質分析 47
3-5-1 電化學阻抗圖譜 47
3-5-2 瞬態光電流響應 49
3-6 感應耦合電漿質譜分析 (Inductively coupled plasma-mass spectrometry, ICP-MS) 49
3-7 接觸角測試 50
第四章 、 結論 51
附錄 52
1.Global Energy Review: CO2 Emissions in 2021, https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2
2.Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3, 43–81.
3.Ciamician G. The Photochemistry of the Future. American Association for the Advancement of Science, 1912, Vol. 36, No. 926, pp. 385-394.
4.Wang, J. W.; Zhong, D. C.; Lu, T. B. Artificial photosynthesis: Catalytic water oxidation and CO2 reduction by dinuclear non-noble-metal molecular catalysts. Coordination Chemistry Review, 2018, 377, 225–236.️
5.Peng, C.; Reid, G.; Wang, H.; Hu, P. Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors. J. Chem. Phys., 2017, 147, 030901.
6.Dai, C.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci., 2020, 13, 24-52.
7.Sunlight, https://en.wikipedia.org/wiki/Sunlight
8.Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed., 2013, 52, 7372–7408.
9.Pan, Y. X.; You, Y.; Xin, S.; Li, Y.; Fu, G.; Cui, Z.; Men, Y.L.; Cao, F.F.; Yu, S.H.; Goodenough, J. B. Photocatalytic CO2 Reduction by Carbon-Coated Indium-Oxide Nanobelts. J. Am. Chem. Soc., 2017, 139, 4123−4129.
10.Alkhatib, I. I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO2 reduction under visible T radiation: A review of strategies and applications. Catalysis Today, 2020, 340, 209–224.
11.Shen, M.; Zhang, L.; Shi, J. Converting CO2 into fuels by graphitic carbon nitride-based photocatalysts. Nanotechnology, 2018, 1361–6528.
12.Zhao, W.; Zhai, D.; Liu, C.; Zheng, D.; Wu, H.; Sun, L.; Li, Z.; Yu, T.; Zhou, W.; Fang, X.; Zhai, S.; Han, K.; He, Z.; Deng, W. q. Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer. Applied Catalysis B: Environmental, 2022, 300, 120719.
13.Ozdemir, J.; Mosleh, I.; Abolhassani, M.; Greenlee, L. F.; Beitle Jr., R. R.; Beyzavi, H. M. Covalent Organic Frameworks for the Capture, Fixation, or Reduction of CO2. Frontiers in Energy Research, 2019, 7, 77.
14.Dai, C.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis Applied Catalysis. Energy Environ. Sci., 2020, 13, 24−52
15.Pachaiappan, R.; Rajendran, S.; Kumar, P. S.; Vo, D. V. N.; Hoang, T. K. A. A review of recent progress on photocatalytic carbon dioxide reduction into sustainable energy products using carbon nitride. Chemical Engineering Research and Design, 2022, 177, 304–320.
16.Nazira, R.; Kumara, A.; Saada, M. A. S.; Ashok, A. Synthesis of hydroxide nanoparticles of Co/Cu on carbon nitride surface via galvanic exchange method for electrocatalytic CO2 reduction into formate. Colloids and Surfaces A, 2020, 598, 124835.
17.Song, X.; Li, X.; Zhang, X.; Wu, Y.; Ma, C.; Huo, P.; Yan, Y. Fabricating C and O co-doped carbon nitride with intramolecular donor-T acceptor systems for efficient photoreduction of CO2 to CO. Applied Catalysis B: Environmental, 2020, 268, 118736.
18.Chen, C. Y.; Tang, C.; Xu, W. W.; Li, Y. Y.; Xu, L. Design of iron atom modified thiophene-linked metalloporphyrin 2D conjugated microporous polymer as CO2 reduction photocatalyst. Phys. Chem. Chem. Phys., 2018, 20, 9536–9542.
19.Barman, S.; Singh, A.; Rahimi, F. A.; Maji, T. K. Metal-Free Catalysis: A Redox-Active Donor-Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO2 Reduction to CH4. J. Am. Chem. Soc., 2021, 143, 16284−16292.
20.Nguyen, H. L.; Alzamly, A. Covalent Organic Frameworks as Emerging Platforms for CO2 Photoreduction. ACS Catal., 2021, 11, 9809−9824.
21.Lei, K.; Wang, D.; Ye, L. Q.; Kou, M. P.; Deng, Y.; Ma, Z. Y.; Wang, L.; Kong, Y. A Metal-Free Donor–Acceptor Covalent Organic Framework Photocatalyst for Visible-Light-Driven Reduction of CO2 with H2O. ChemSusChem, 2020, 13, 1725−1729.
22.Biswas, S.; Dey, A.; Rahimi, F. A.; Barman, S.; Maji, T. K. Metal-Free Highly Stable and Crystalline Covalent Organic Nanosheet for Visible-Light-Driven Selective Solar Fuel Production in Aqueous Medium. ACS Catal., 2023, 13, 5926−5937.
23.Sprick, S. R.; Bonillo B.; Clowes R.; Guiglion P.; Brownbill N. J.; Slater B. J.; Blanc F.; Zwijnenburg M. A.; Dave J. A.; Cooper A. I. Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. Angew. Chem., 2016, 128, 1824–1828.
24.Lai, W. C.; Wang, S. H.; Sun, H. S.; Liao, C. W.; Liu, T. Y.; Lee, H. T.; Yang, H. R.; Wang, L.; Lai, Y. Y. Stable and Exclusive Formation of CO from CO2 Photoreduction with H2O Facilitated by Linear Fluorene and Naphthalene Diimide-Based Conjugated Polymers. ACS Appl. Polym. Mater., 2022, 4, 521−526
25.Funahashi, M. Solution-processable electronic and redox-active liquid crystals based on the design of side chains. Flex. Print. Electron., 2020, 5, 043001.
26.Meng, B.; Liu, J.; Wang, L. Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym. Chem., 2020, 11, 1261–1270
27.Guoa X.; Li D., Zhang Y.; Jan M., Xu J.; Wang Z.; Li B., Xiong S.; Li Y.; Liu F.; Tang J.; Duan C.; Fahlman M.; Bao Q. Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells. Organic Electronics, 2019, 71, 65–71.
28.Yuana, J. Y.; Guob, W. P.; Xiac, Y. X.; Fordd, M. J.; Feng, J.; Liua, D. Y.; Zhaob, H. B.; Inganäsc, O.; Bazand, G. C.; Wanli, M. Comparing the device physics, dynamics and morphology of polymer solar cells employing conventional PCBM and non-fullerene polymer acceptor N2200. Nano Energy., 2017, 35, 251–262.
29.Wang, S. H.; Khurshid, F.; Chen, P. Z.; Lai, Y. R.; Cai, C. W.; Chung, P. W.; Hayashi, M.; Jeng, R. J.; Rwei, S. P.; Wang, L. Y. Solution-Processable Naphthalene Diimide-Based Conjugated Polymers as Organocatalysts for Photocatalytic CO2 Reaction with Extremely Stable Catalytic Activity for Over 330 Hours. Chem. Mater., 2022, 34, 4955−4963.
30.Chang, C. Y.; Shih, Y.-H.; Chen, W. C.; Chueh, C. C. Influence of side-chain substitution for thiophene-based conjugated polymers on the charge transport properties: Carboxylate ester group versus carboxamide group. Organic Electronics, 2022, 110, 106634.
31.An, S.; Wu, Z.; Jeong, H.; Lee, J.; Jeong, S. Y.; Lee, W.; Kim, S.; Han, J. W.; Lim, J.; Cha, H.; Woo, H. Y.; Chung, D. S. Synergistic Contribution of Oligo(ethylene glycol) and Fluorine Substitution of Conjugated Polymer Photocatalysts toward Solar Driven Sacrificial Hydrogen Evolution. Small, 2023, 19, 2204905
32.Lin, W. C.; Jayakumar, J.; Chang, C. L.; Ting, L. Y.; Elsayed, M. H.; Abdellah, M.; Zheng, K.; Elewa, A. M.; Lin, Y. T.; Liu, J. J.; Wang, W. S.; Lu, C. Y.; Chou, H. H. Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 298, 120577
33.Shua, G.; Lia, Y.; Wanga, Z.; Jiangb, J. X.; Wang, F. Poly (dibenzothiophene-S,S-dioxide) with visible light-induced hydrogen evolution rate up to 44.2 mmol h−1 g−1 promoted by K2HPO4. Applied Catalysis B: Environmental, 2020, 261, 118230
34.Yu, F.; Wang, Z.; Zhang, S.; Wu, W. Ye, H.; Ding, H.; Gong, X.; Hua, J. Construction of polymeric carbon nitride and dibenzothiophene dioxide-based intramolecular donor–acceptor conjugated copolymers for photocatalytic H2 evolution. Nanoscale Adv., 2021, 3, 1699–1707
35.Lan, Z. A.; Ren, W.; Chen, X.; Zhang, Y.; Wang, X. Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245, 596–603
36.Dai, C. H.; Zhong, L. X.; Wu, W.; Zeng, C.; Deng, Y.; Li, S. Z. 1,3,5-Triphenylbenzene Based Porous Conjugated Polymers for Highly Efficient Photoreduction of Low-Concentration CO2 in the Gas-Phase System. Sol. RRL., 2022, 6, 2100872.
37.Woods, D. J.; Hillman, S. A. J.; Pearce, D.; Wilbraham, L.; Flagg, L. Q., Duffy, W.; McCulloch, I.; Durrant, J. R.; Guilbert, A. A. Y.; Zwijnenburg, M. A.; Sprick, R. S.; Nelson, J.; Cooper, A. I. Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy Environ. Sci., 2020, 13, 1843–1855
38.Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry, 1999, 576, 147–168
39.Yin, L. X.; Liebscher, J. Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev., 2007, 107, 133−173.
40.Ribierre, J. C.; Zhao, L.; Inoue, M.; Schwartz, P. O.; Kim, J. H.; Yoshida, K.; Sandanayaka, A. S. D.; Nakanotani, H.; Mager, L.; Me´ry, S.; Adachi, C. Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives. Chem. Commun., 2016, 52, 3103−3106.
41.Pandolfi, F.; Rocco, D.; Mattiello, L. Synthesis and characterization of new D–π-A and A–π-D–π-A type oligothiophene derivatives. Org. Biomol. Chem., 2019, 17, 3018–3025.
42.Gebers, J.; Rolland, D.; Marty, R.; Surez, S.; Cervini, L.; Scopelliti, R.; Brauer, J. C.; Frauenrath, H. Solubility and Crystallizability: Facile Access to Functionalized pConjugated Compounds with Chlorendylimide Protecting Groups. Chem. Eur. J., 2015, 21, 1542–1553.
43.Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons, Inc., 2001, 0-471-04372-9.
44.Li, R. L.; Zhang, X. B.; Zhang, C.; Lu, J. F.; Wang, J. C.; Cui, C. X.; Yang, X. Y.; Huang, F.; Jiang, J. X.; Zhang, Y. P. Adenine-functionalized conjugated polymer as an efficient photocatalyst for hydrogen evolution from water. International Journal of Hydrogen Energy, 2022, 47, 29771–29780.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top