跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊竣捷
研究生(外文):ZHUANG,JUN-JIE
論文名稱:生質低熔點聚醯胺的合成及鳳梨纖維複合材料的製備
論文名稱(外文):Synthesis of Bio-based Polyamide with Low-melting Point and Preparation of Pineapple Fiber Composites Materials
指導教授:芮祥鵬芮祥鵬引用關係
指導教授(外文):RWEI,SYANG-PENG
口試委員:芮祥鵬李宜桓魏騰芳
口試委員(外文):RWEI,SYANG-PENGLEE,YI-HUANWEI,TUNG-FANG
口試日期:2023-07-03
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:63
中文關鍵詞:低熔點低吸濕熱熔膠鳳梨葉纖維
外文關鍵詞:Low melting pointLow water absorptionHot melt adhesivePineapple leaf fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用己內醯胺、尼龍66鹽及長碳鏈尼龍鹽(1010鹽、1011鹽、1012鹽、1013鹽及1014鹽)合成一系列低熔點且生質型(生質單體含量>40%)的聚醯胺熱熔材料(LMPA)。LMPA的熱性質及機械性質可以透過高分子中引入不同長度的長碳鏈二羧酸單元進行調節。LMPA的熔融溫度(Tm)及玻璃轉移溫度(Tg)分別落於108-116 °C及27-32 °C之間。LMPA的抗拉強度、延伸率及吸水率分別落於47-60 MPa、390-500 %及3.7-2.6 %之間。基於減塑及低碳排的未來需求,進一步地將廢鳳梨葉纖維與LMPA進行結合,以製備生質複合材料,減少對石油資源的依賴。透過掃描式電子顯微鏡 (SEM)可以觀察到鳳梨纖維與LMPA之間形成良好的黏附力。纖維填料的加入可以有效地增強LMPA樹脂的楊氏模量 (提升96%)及屈服強度 (提升124%)。此外,天然纖維填料的加入可提高LMPA樹脂的生物基含量 (>60%)及生物可分解的潛力,這些結果有利於實現“可持續材料”和“低碳足跡”的產業轉型。
In this study, a series of low-melting-point and bio-based polyamide (LMPA) materials containing caprolactam, 66 salt, and long-chain salts (1010 salt, 1011 salt, 1012 salt, 1013 salt, and 1014 salt). The thermal and mechanical properties of LMPA were adjusted by incorporating various dicarboxylic acids with different chain lengths into the polymer. The melting temperature (Tm) of LMPA was in the range of 108 to 116 °C, and the glass transition temperature (Tg) was in the range of 27 to 32 °C. The tensile strength, elongation at break, and water absorption of LMPA were in the range of 47-60 MPa, 390-500%, and 3.7-2.6%, respectively. Base on the requirement for low-carbon technology and plastic reduction, waste fibers form pineapple leaf were further incorporated with LMPA to prepare bio-based composites in this study, aiming to reduce dependence on petroleum resources. The strong adhesion between the pineapple fibers and LMPA resin was observed by scanning electron microscopy (SEM). The Young's modulus and yield strength of LMPA with plant fibers were higher than that of LMPA without plant fibers, enhancing 96% and 124%, respectively. The increasing of waste plant fiber in bio-based resin can be improved its biodegradability potential, and promoted the realization of a sustainable materials and low carbon footprint.
摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 ix
誌謝 x
1 第一章 緒論 1
1.1 前言 1
2 第二章 文獻回顧 3
2.1 低熔點聚醯胺介紹 3
2.1.1 聚醯胺熔點 3
2.2 改性聚醯胺 4
2.2.1 交替式共聚合物(alternating copolymer) 5
2.2.2 嵌段共聚物(Block Copolymers) 5
2.2.3 交聯共聚物(AB-Cross-linked Copolymer) 6
2.2.4 接枝共聚物(graft copolymer) 6
2.2.5 無規共聚物(random copolymer) 6
2.3 共聚醯胺製備 7
2.4 低熔點共聚醯胺熱熔膠製備 7
2.4.1 蓖麻油(Castor oil) 8
2.4.2 成鹽 9
2.4.3 縮合聚合(Condensation reaction) 10
2.5 低熔點聚醯胺應用 10
2.5.1 低熔點聚醯胺熱熔膠 10
2.5.2 低熔點聚醯胺複合材料 12
3 第三章 實驗方法與流程 14
3.1 實驗藥品及材料 14
3.2 實驗儀器及設備 17
3.3 實驗方式 18
3.3.1 聚醯胺鹽(66 salt)製備 18
3.3.2 聚醯胺鹽(1010、1011、1012、1013、1014 salt)製備 18
3.3.3 低熔點共聚醯胺合成(LMPA10,11,12,13,14) 19
3.3.4 鳳梨葉纖維鹼處理 20
3.3.5 聚醯胺/鳳梨葉纖維複合材料製備 20
3.4 測試方法及條件 21
3.4.1 核磁共振光譜儀(1H-NMR) 21
3.4.2 傅立葉轉換紅外線光譜儀 (FTIR) 21
3.4.3 熱示差掃描分析儀(DSC) 21
3.4.4 動態黏彈性分析儀(DMA) 21
3.4.5 熱重分析儀(TGA) 21
3.4.6 拉伸試驗(Tensile test) 22
3.4.7 流變儀(Rheometer) 22
3.4.8 相對黏度(Relative viscosity) 22
3.4.9 末端胺基濃度[NH2] 23
3.4.10 吸濕性測試(Water absorption test) 23
3.4.11 剝離強度測試(peel strength) 24
3.4.12 掃描式電子顯微鏡(SEM) 24
3.4.13 偏光顯微鏡(POM) 24
4 第四章 不同二羧酸之LMPA共聚物製備與分析 25
4.1 LMPA分析 25
4.1.1 聚醯胺鹽結構分析 25
4.1.2 LMPA之結構鑑定 28
4.2 LMPA的熱性能 30
4.2.1 LMPA之熱示差掃描分析儀(DSC) 30
4.2.2 LMPA之熱重分析儀(TGA) 33
4.2.3 LMPA之熱動態機械性能(DMA) 36
4.3 LMPA之機械性質 37
4.4 LMPA之流變性質 40
4.5 LMPA之剝離強度測試(T-peel) 43
5 第五章 鳳梨葉纖維複合材料製備與分析 44
5.1 鹼處理後鳳梨葉纖維的分析 44
5.2 鳳梨葉纖維複合材料分析 47
5.2.1 鳳梨葉纖維複合材料之結構鑑定 47
5.2.2 鳳梨葉纖維複合材料之電子偏光顯微鏡(POM) 48
5.3 鳳梨葉纖維複合材料之電子掃描顯微鏡(SEM) 48
5.4 鳳梨葉纖維複合材料熱性質 49
5.4.1 熱示差掃描分析儀(DSC) 49
5.4.2 鳳梨葉纖維複合材料之熱重分析儀(TGA) 52
5.4.3 鳳梨葉纖維複合材料之熱動態機械性能(DMA) 53
5.5 鳳梨葉纖維複合材料之機械性質 55
5.6 鳳梨葉纖維複合材料之流變性質 56
5.7 鳳梨葉纖維複合材料之剝離強度測試(T-peel) 59
6 結論 60
7 參考文獻 61

[1]K. Marchildon, "Polyamides - Still Strong After Seventy Years," Macromolecular Reaction Engineering, vol. 5, no. 1, pp. 22-54, 2011, doi: 10.1002/mren.201000017.
[2]L. Tous, R. A. Ruseckaite, and E. M. Ciannamea, "Sustainable hot-melt adhesives based on soybean protein isolate and polycaprolactone," Industrial Crops and Products, vol. 135, pp. 153-158, 2019, doi: 10.1016/j.indcrop.2019.04.043.
[3]W. Pan et al., "The Mechanical Property and Crystalline Structure of Novel High-Strength Polyamide Fibers," in Physics and Techniques of Ceramic and Polymeric Materials, (Springer Proceedings in Physics, 2019, ch. Chapter 5, pp. 33-46.
[4]P. P. Das and V. Chaudhary, "Moving towards the era of bio fibre based polymer composites," Cleaner engineering and technology, vol. 4, p. 100182, 2021.
[5]S. Thakur, J. Chaudhary, P. Singh, W. F. Alsanie, S. A. Grammatikos, and V. K. Thakur, "Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy," Bioresource Technology, vol. 344, p. 126156, 2022.
[6]T. Ai et al., "Synthesis and properties of biobased copolyamides based on polyamide 10T and polyamide 56 through one-pot polymerization," New Journal of Chemistry, vol. 45, no. 32, pp. 14677-14686, 2021, doi: 10.1039/d1nj02330f.
[7]Y. Gao, T. Yang, X. Wang, Y. Xia, B. Zhu, and Y. He, "Synthesis and characterization of poly (hexamethylene terephthalate/hexamethylene oxamide) alternating copolyamide (alt‐PA6T/62)," Journal of Applied Polymer Science, vol. 138, no. 5, p. 49773, 2021.
[8]M. Li, J. Bijleveld, and T. J. Dingemans, "Synthesis and properties of semi-crystalline poly (decamethylene terephthalamide) thermosets from reactive side-group copolyamides," European Polymer Journal, vol. 98, pp. 273-284, 2018.
[9]A. Abeta, C. M. Yun, and Y. Nagase, "Syntheses of PEO Graft Copolyamides and the Permselectivity of CO2," Transactions of the Materials Research Society of Japan, vol. 37, no. 3, pp. 435-438, 2012.
[10]Z. Wang et al., "Synthesis of fully bio-based polyamides with tunable properties by employing itaconic acid," Polymer, vol. 55, no. 19, pp. 4846-4856, 2014.
[11]S.-P. Rwei, P. Ranganathan, and Y.-H. Lee, "Synthesis and characterization of low melting point PA6 copolyamides from ε-caprolactam with bio-based polyamide salt," Journal of Molecular Structure, vol. 1186, pp. 285-292, 2019.
[12]S. Sönnerskog, O. Tjomsland, K. Taugbøl, H. Theorell, and B. Thorell, "The melting temperatures of 66/6 copolyamides," Acta Chem. Scand, vol. 10, no. 1, 1956.
[13]W. Xue, Z. Zong, L. Zhou, and Z. Zeng, "Synthesis and properties of nylon 6/66/510 used as hot melt adhesives for metal plate with low-surface-energy coating," Journal of Adhesion Science and Technology, vol. 33, no. 4, pp. 395-405, 2019.
[14]X.-D. Jin, G.-S. Hu, Y.-F. Yang, X.-M. Zhou, and B.-B. Wang, "Nylon 6/66/11 copolymer used for hot-melt adhesives: Synthesis and properties," Journal of adhesion science and technology, vol. 23, no. 5, pp. 779-785, 2009.
[15]R. Techie-Menson, C. K. Rono, A. Etale, G. Mehlana, J. Darkwa, and B. C. Makhubela, "New bio-based sustainable polymers and polymer composites based on methacrylate derivatives of furfural, solketal and lactic acid," Materials Today Communications, vol. 28, p. 102721, 2021.
[16]V. K. Kalidas, R. Pavendhan, K. Sudhakar, T. Sumanth, and K. Y. Kumar, "Study of synthesis and analysis of bio-inspired polymers-review," Materials Today: Proceedings, vol. 44, pp. 3856-3860, 2021.
[17]E. Watt, M. A. Abdelwahab, A. K. Mohanty, and M. Misra, "Biocomposites from biobased polyamide 4, 10 and waste corn cob based biocarbon," Composites Part A: Applied Science and Manufacturing, vol. 145, p. 106340, 2021.
[18]X.-F. Wei, K. J. Kallio, S. Bruder, M. Bellander, R. T. Olsson, and M. S. Hedenqvist, "High-performance glass-fibre reinforced biobased aromatic polyamide in automotive biofuel supply systems," Journal of Cleaner Production, vol. 263, p. 121453, 2020.
[19]S. Yu, J. Cui, X. Wang, C. Zhong, Y. Li, and J. Yao, "Preparation of sebacic acid via alkali fusion of castor oil and its several derivatives," Journal of the American Oil Chemists' Society, vol. 97, no. 6, pp. 663-670, 2020.
[20]W. Li, L. Bouzidi, and S. S. Narine, "Current research and development status and prospect of hot-melt adhesives: A review," Industrial & Engineering Chemistry Research, vol. 47, no. 20, pp. 7524-7532, 2008.
[21]E. E. Kiziltas, H.-S. Yang, A. Kiziltas, S. Boran, E. Ozen, and D. J. Gardner, "Thermal analysis of polyamide 6 composites filled by natural fiber blend," BioResources, vol. 11, no. 2, pp. 4758-4769, 2016.
[22]D. Van Cong et al., "Biocomposites from polyamide 11 reinforced by organic silane modified jute fibers: Fabrication and characterization," Journal of Applied Polymer Science, vol. 139, no. 11, p. 51795, 2022.
[23]H. Baniasadi, J. Trifol, S. Lipponen, and J. Seppälä, "Sustainable composites of surface-modified cellulose with low–melting point polyamide," Materials Today Chemistry, vol. 22, p. 100590, 2021.
[24]W. Feng et al., "Effect of aliphatic diacid chain length on properties of semiaromatic copolyamides based on PA10T and their theoretical study," Industrial & Engineering Chemistry Research, vol. 58, no. 17, pp. 7217-7226, 2019.
[25]G. Zou, P. Wang, W. Feng, Z. Ren, and J. Ji, "Poly (decamethylene terephthalamide) copolymerized with long‐chain alkyl dodecanedioic acid: Toward bio‐based polymer and improved performances," Journal of Applied Polymer Science, vol. 135, no. 31, p. 46531, 2018.
[26]S. Venkataramani#, J. H. Lee, M. G. Park, and S. C. Kim, "Structure and properties of polyamide-6 & 6/66 clay nanocomposites," Journal of Macromolecular Science, Part A, vol. 46, no. 1, pp. 65-73, 2008.
[27]S. D. Kim, A. Kafi, H. Wu, S. Bateman, and J. H. Koo, "Additive Manufacturing of Polyamide 6/66 Copolymer Nanocomposites: Thermal and Flammability Properties," 2020.
[28]F. Stempfle, P. Ortmann, and S. Mecking, "Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates," Chemical reviews, vol. 116, no. 7, pp. 4597-4641, 2016.
[29]S.-P. Rwei, P. Ranganathan, and Y.-H. Lee, "Isothermal crystallization kinetics study of fully aliphatic PA6 copolyamides: Effect of novel long-chain polyamide salt as a comonomer," Polymers, vol. 11, no. 3, p. 472, 2019.
[30]C. Yue et al., "Three-dimensional printing of cellulose nanofibers reinforced PHB/PCL/Fe3O4 magneto-responsive shape memory polymer composites with excellent mechanical properties," Additive Manufacturing, vol. 46, p. 102146, 2021.
[31]L. Cui et al., "Rheology of PLA/regenerated cellulose nanocomposites prepared by the pickering emulsion process: Network formation and modeling," Materials & Design, vol. 206, p. 109774, 2021.
[32]K. Panyasart, N. Chaiyut, T. Amornsakchai, and O. Santawitee, "Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites," Energy procedia, vol. 56, pp. 406-413, 2014.
[33]H. Chen, Y. Cui, X. Liu, M. Zhang, S. Hao, and Y. Yin, "Study on depositing SiO2 nanoparticles on the surface of jute fiber via hydrothermal method and its reinforced polypropylene composites," Journal of Vinyl and Additive Technology, vol. 26, no. 1, pp. 43-54, 2020.
[34]L. Y. Mwaikambo and M. P. Ansell, "Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization," Journal of applied polymer science, vol. 84, no. 12, pp. 2222-2234, 2002.
[35]R. Shorey, A. Gupta, and T. H. Mekonnen, "Hydrophobic modification of lignin for rubber composites," Industrial Crops and Products, vol. 174, p. 114189, 2021.
[36]Ł. Klapiszewski, B. Podkościelna, M. Goliszek, A. Kubiak, K. Młynarczyk, and T. Jesionowski, "Synthesis, characterization and aging tests of functional rigid polymeric biocomposites with kraft lignin," International Journal of Biological Macromolecules, vol. 178, pp. 344-353, 2021.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top