跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張晉嘉
研究生(外文):CHANG, JIN-JIA
論文名稱:開發新穎性環保型熱塑性聚醯胺彈性體系統
論文名稱(外文):Development of a Novel Environment-Friendly Thermoplastic Polyamide Elastomer System
指導教授:李宜桓
指導教授(外文):LEE, YI-HUAN
口試委員:李宜桓程耀毅林維朋
口試委員(外文):LEE, YI-HUANCHENG, YAO-YILIN, WEI-PENG
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:80
中文關鍵詞:生物基原料聚醯胺彈性體蓖麻油環境友善降低碳排放
外文關鍵詞:bio-based raw materialspolyamide elastomercastor oilenvironmental friendlinesscarbon emission reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今的時代科技日益進步,許多的聚合物產品被大量的開發與製造,然而大多數使用的聚合物皆為來自於石油的原物料所製備,也因而產生了大量的塑料廢棄物並且對於環境保護與氣候變遷上產生了嚴重的影響。為了解決此一環境的議題,近來對於生物基聚合物的需求正在快速地增加當中。生物基聚合物指的是其製造是採用來自於天然物中萃取出的生質原料而非使用石化原料,如此可有效地減少石油原料的消耗以及大幅降低聚合物產品製造時的二氧化碳排放量,達到永續發展的效益。基於此考量下,本研究使用來自於天然植物蓖麻油提煉的癸二酸(sebacic acid)和石油基來源的癸二胺(1,10-diaminodecane)兩種的單體作為聚醯胺彈性體的硬鏈段,同時再導入具有可生物降解性質的聚己內酯二醇 (polycaprolactone diol) 軟鏈段來進行熔融縮聚,開發出一具有不同聚己內酯比例含量之新穎生質聚醯胺彈性體系統。在成功的合成之後,差式掃描熱量分析儀(DSC)、熱重分析儀(TGA) 、動態熱分析儀(DMA)、拉伸試驗被分別用來系統性地探討此聚醯胺彈性體系統的結晶性、熱性質以及機械性質。本研究成功地開發出有效結合生物基來源單體與可生物降解聚己內酯二醇之聚醯胺彈性體,同時兼具有環境友善以及有效降低碳排放量的效益。此外此材料由於具有良好的機械性質和較低的玻璃轉移溫度,可應用於超臨界二氧化碳發泡製備出具有良好膨脹倍率和均勻泡孔結構的發泡材料。我們相信本材料系統在未來綠色應用和減少商業碳稅上深具發展潛力與高度價值。
In today's era, science and technology are advancing day by day, and many polymer products are developed and manufactured in large quantities. However, most of the polymers used are prepared from raw materials derived from petroleum, thus generating a large amount of plastic waste, and having a serious impact on environmental protection and climate change. To solve this environmental issue, the demand for bio-based polymers is rapidly increasing recently. Bio-based polymers refer to the use of bio-based raw materials extracted from natural products instead of petrochemical raw materials, which can effectively reduce the consumption of petroleum raw materials and greatly reduce carbon dioxide emissions during the manufacture of polymer products, achieving the benefits of sustainable development. Based on this consideration, this study used two monomers, sebacic acid extracted from natural plant castor oil and 1,10-diaminodecane from petroleum-based sources, as the hard segment of polyamide elastomer. At the same time, polycaprolactone diol soft segment with biodegradable properties was introduced to carry out melt polycondensation, and a new bio-based polyamide elastic material system with different proportions of polycaprolactone was developed. After the successful synthesis, differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic thermal analyzer (DMA), and tensile test were used to systematically investigate the polyamide elastomer system’s crystallinity, thermal properties and mechanical properties. This research successfully developed a polyamide elastomer that effectively combined bio-based monomers and biodegradable polycaprolactone diol, exhibiting environmental advantages and effectively reducing carbon emissions. In addition, due to its good mechanical properties and low glass transition temperature, this material can be applied to supercritical carbon dioxide foaming to prepare foaming materials with good expansion ratio and uniform cell structure. We believe that this material system has high value in future green applications and reduction of commercial carbon tax, showing great development potential.
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xii
1 第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
2 第二章 文獻回顧 4
2.1 聚醯胺 4
2.1.1 聚醯胺之演變 4
2.1.2 聚醯胺之特色 5
2.2 高分子彈性體 6
2.2.1 熱塑型彈性體 6
2.2.2 聚醯胺彈性體 7
2.3 生物基聚合物 9
2.3.1 生物基聚合物之概述 9
2.3.2 生物基原料 11
2.3.3 生物基聚醯胺 13
2.3.4 生物基聚醯胺彈性體 15
2.4 高分子發泡材料 16
2.4.1 高分子發泡材料之概述 16
2.4.2 發泡之機制 17
2.4.3 發泡之方式 18
2.4.4 超臨界流體發泡 19
3 第三章 實驗 21
3.1 實驗藥品 21
3.1.1 高分子聚合藥品 21
3.1.2 實驗溶劑 23
3.2 實驗設備與裝置 26
3.3 實驗結果分析儀器 32
3.4 實驗方法 41
3.4.1 生物基聚醯胺彈性體製備 41
3.4.2 聚醯胺1010彈性體的合成比例 42
3.4.3 生物基聚醯胺彈性體之超臨界CO2發泡 43
3.5 聚醯胺1010彈性體及其發泡體的分析條件和測定方式 44
3.5.1 熱重分析儀 44
3.5.2 差示掃描熱分析儀 44
3.5.3 核磁共振光譜儀 44
3.5.4 傅立葉轉換式紅外線光譜儀 44
3.5.5 動態黏彈性分析儀 45
3.5.6 X射線繞射儀 45
3.5.7 分子量滴定分析 45
3.5.8 流變儀 46
3.5.9 拉伸試驗 46
3.5.10 發泡後膨脹倍率之計算 46
3.5.11 發泡材料孔隙率與泡孔密度之計算 47
3.5.12 桌上型掃描式電子顯微鏡之泡孔分析 47
4 第四章 結果與討論 48
4.1 聚醯胺彈性體的結構分析 48
4.2 聚醯胺1010彈性體的結構分析 49
4.2.1 FTIR官能基鑑定 49
4.2.2 XRD結晶分析 51
4.2.3 TGA熱穩定性分析 52
4.2.4 DSC熱性質分析 54
4.2.5 DMA玻璃轉移溫度分析 56
4.2.6 流變分析 58
4.2.7 拉伸試驗機械性質分析 61
4.3 超臨界CO2發泡之膨脹倍率計算與微觀結構分析 63
5 第五章 結論 71
6 參考文獻 72

1.Weber, J. N. (2000). Polyamides. General. Kirk-Othmer Encyclopedia of Chemical Technology, (Ed.), p. 56666.
2.Marchildon, K. Polyamides – Still Strong After Seventy Years. Macromolecular Reaction Engineering 2011, 5(1), 22-54.
3.Kohan, M. I. (1995). Nylon Plastics Handbook, Hanser, New York.
4.Faridirad, F., Ahmadi, S., Barmar, M. (2017). Polyamide/Carbon Nanoparticles Nanocomposites: A Review. Polymer Engineering & Science, 57(5), p475-494.
5.Jiang, J., Tang, Q., Pan, X., Xi, Z., Zhao, L., Yuan, W. Structure and Morphology of Thermoplastic Polyamide Elastomer Based on Long-Chain Polyamide 1212 and Renewable Poly(trimethylene glycol). Ind. Eng. Chem. Res. 2020, 59, 39, 17502–17512.
6.Yuan, R., Fan, S., Wu, D., Wang, X., Yu, J., Chen, L., Li, F. Facile synthesis of polyamide 6 (PA6)-based thermoplastic elastomers with a well-defined microphase separation structure by melt polymerization. Polym. Chem. 2018, 9, 1327.
7.J, W., K, P. The Polyamide Market. Fiber and Textiles in Eastern Europe 2016, 24(6), 12-18.
8.Garcia, J. M., Garcia, F. C., Serna, F., Pena, J. L. (2010). High-performance aromatic polyamides. Progress in Polymer Science. 35, 5, p511-686.
9.Harmsen, P. F. H., Hackmann, M. M., Bos, H. L. Green building blocks for bio-based plastics 2014, 8, 306.
10.Samantaray, S. K., Satapathy, B. K. Ultratoughening of Biobased Polyamide 410. ACS Omega 2020, 5, 10, 5306–5317.
11.Moran, C. S., Barthelon, A., Pearsall, A., Mittal, V., Dorgan, J. R. Biorenewable blends of polyamide-4,10 and polyamide-6,10. Applied Polymer 2016, 133, 45.
12.Jian, X. Y., An, X. P., Li, Y. D., Chen, J. H., Wang, M., Zeng, J. B. (2017). All Plant Oil Derived Epoxy Thermosets with Excellent Comprehensive Properties. Macromolecules, 50, p5729– 5738.
13.Spontak, R. J., Patel, N. P. (2000). Thermoplastic elastomers: fundamentals and applications. Collid & interface science, 5(5), p333-340.
14.Ibrahim, A., Dahlan, M. (1998). Thermoplastic natural rubber blends, 23(4), p665-706.
15.Holden, G. Thermoplastic Elastomers. In Applied Plastics Engineering Handbook 2017, p91-107.
16.Handlin, J. D. L. (2001). Thermoplastic Elastomers, Encyclopedia of Materials: Science and Technology, p9197-9204.
17.Wen, Y., Li, D., Yang, J., Yan, G., Wang, X., Liu, S., Zhang, G. (2023). Polyether Amide Thermoplastic Elastomer: Nucleophilic Substitution Polymerization and Properties. Ind. Eng. Chem. Res.
18.Yang, Y., Kong, W., Cai, X. (2017). Preparation and characterization of a new class of poly(ether-block-amide)s via solvent free reactive processing. Polymers advanced technologies, 29(1), p490-496.
19.Chen, G., Su, Q., Zhao, J., Zhang, Z., Zhang, J., Wan, T. (2014). Synthesis and characterization of segmented poly(ether ester amide)s from diglycol, adipic acid, and a nylon-6 oligomer. Polymer Engineering & Science, 55(4), p763-770.
20.Yeh, F., Hsiao, B. S., Sauer, B. B., Michel, S ., Siesler, H. W. (2003). Macromolecules, 36, p1940–1954.
21.Sheth, J. P., Xu, J., Wilkers, G. L. Solid state structure–property behavior of semicrystalline poly(ether-block-amide) PEBAXw thermoplastic elastomers. Polymer 2003, 44(3), p743-756.
22.Li, H., Cai, X. Effect of block molecular weight on the mechanical properties of PA1010-b-PEG segmented block copolymers. Advanced Materials Research 2012, 512-515(3), p2127-2130.
23.Gong, S., Zhao, S., Chen, X., Liu, H., Deng, J., Li, S., Feng, X., Li, Y., Wu, X., Pan, K. Thermoplastic Polyamide Elastomers: Synthesis, Structures/Properties, and Applications. Macromolecular Materials and Engineering 2021, 306(12).
24.Gandini, A., Lacerda, T. M., Carvalho, A. J. F., Trovatti, E. (2016). Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chem. Rev., 116(3), p1637-1669.
25.Mülhaupt, R. (2013). Green polymer chemistry and bio-based plastics: Dreams and reality. Macromolecular. Chem. Phys., 214, p159–174.
26.Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41, p1538–1558.
27.Jiang, Y., Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers 2016, 8(7), 243
28.Babu, R. P., O'Connor, K., Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, (18)2, p8.
29.Tokiwa, Y., Calabia, B. P.,Ugwu, C. U., Aiba, S. (2009). Biodegradability of Plastics. Int. J. Mol. Sci., 10, p3722-3742.
30.Prieto, A. (2016). To be, or not to be biodegradable… that is the question for the bio-based plastics. Microbial Biotechnol, 9(5), p652-657.
31.Zhao, X., Cornish, K., Vodovotz Y. (2020). Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environmental Science & Technology, 54(8), p4712-4732.
32.Rosenboom, J., Langer, R., Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, p117-137.
33.Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B., Patel, M. K. (2012). A Review of the Environmental Impacts of Biobased Materials. Industrial Ecolocy, 16(1), p169-181.
34.Karan, H., Funk, C., Grabert, M., Oey, M., Hankamer, B. (2019). Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science, 24(3), p237-249.
35.Hottle, T. A., Bilec, M. M., Landis A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), p1898-1907.
36.Froidevaux, V., Negrell, C., Caillol, S., Pascault, J., Boutevin, B. (2016). Biobased Amines: From Synthesis to Polymers; Present and Future. Chem. Rev., 116(22), p14181–14224.
37.Iwata, T. (2015). Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angewandte Chemie, 54(11), p3210-3215.
38.Hatti-Kaul, R., Nilsson, L. J., Zhang, B., Rehnberg, N., Lundmark, S. Designing Biobased Recyclable Polymers for Plastics. Trends in Biotechnology 2020, 38(1), p50-67.
39.Lambert, S., Wanger, M. (2017). Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 46(22), p6855-6871.
40.Imre, B., Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), p1215-1233.
41.MacArthur, E., McKinsey. (2016). The new plastics economy — rethinking the future of plastics. World Economic Forum.
42.Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T., Chen, E. Y. X. (2022). Bio-based polymers with performance-advantaged properties. Nature Reviews Materials, 7, p83-103.
43.Raschka, A., Carus, M., Piotrowski S. Renewable Raw Materials and Feedstock for Bioplastics. Bio-Based Plastics: Materials and Applications 2013, 214(2), p159-174.
44.Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., Smith, D. L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews 2021, 139, p110691.
45.Sardon, H., Mecerreyes, D., Basterretxea, A., Avérous, L., Jehanno C. (2021). From Lab to Market: Current Strategies for the Production of Biobased Polyols. ACS Sustainable Chem. Eng., 9(32), p10664–10677.
46.Ogunniyi, D. S. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), p1086-1091.
47.Bhukya, G., Kaki, S. (2022). Design and Synthesis of Sebacic Acid from Castor Oil by New Alternate Route. European Journal of Lipid Science and Technology, 124(5), p 2100244.
48.Yu, S., Cui, J., Wang, X., Zhong, C., Li, Y., Yao, J. (2020). Preparation of Sebacic Acid via Alkali Fusion of Castor Oil and its Several Derivatives. JAOCS, 97(6), p663-670.
49.Naughton, F. C. (1974). Production, chemistry, and commercial applications of various chemicals from castor oil. Journal of the American Oil Chemists Society, 51, p65-71.
50.Mutlu, H., Michael, Meier, A. R. (2010). Castor oil as a renewable resource for the chemical industry. European Journal of Lipid Science and Technology, 112(1), p10-30.
51.Brehmer, B. Polyamides from Biomass Derived Monomers. Bio-Based Plastics: Materials and Applications 2013, p275-293.
52.Mubofu, E. B. Castor oil as a potential renewable resource for the production of functional materials. Sustain Chem Process 2016, 4(11).
53.Winnacker, M., Rieger B. (2016). Biobased Polyamides: Recent Advances in Basic and Applied Research. Macromolecular Rapid Communications, 37(17), p1391-1413.
54.Genas, M. (1962). Rilsan (Polyamid 11), Synthese und Eigenschaften. Angewandte Chemie, 74(15), p535-540.
55.Jariyavidyanont, K., Focke, W., Androsch R. Thermal Properties of Biobased Polyamide 11. Advances in Polymer Science 2019, 283, p143-187.
56.Zuo, J., Li, S., Bouzidi, L., Narine, S. S. (2011). Thermoplastic polyester amides derived from oleic acid. Polymer, 52(20), p4503-4516.
57.Tang, S., Li, J., Wang, R., Zhang, J., Lu, Y., Hu, G., Wang, Z., Zhang, L. (2022). Current trends in bio-based elastomer materials. SusMat, 2(1), p2-33.
58.Liu, Q., Tian, M., Ding, T., Shi, R., Zhang, L. (2005). Preparation and characterization of a biodegradable polyester elastomer with thermal processing abilities. Applied Polymer, 98(5), p2033-2041.
59.Raps, D., Hossieny, N., Park, C. B., Altstädt, V. (2015).Past and present developments in polymer bead foams and bead foaming technology. Polymer, 56(15), p5-19.
60.ROSSACCI, J., SHIVKUMAR S. (2003). Bead fusion in polystyrene foams. Materials Science, 38, p201-206.
61.Lee, L., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G., (2005). Polymer nanocomposite foams Composites. Science and Technology, 65(15-16), p2344-2363.
62.Sorrentino, L., Aurilia, M., Iannace, S. (2011). Polymeric foams from high-performance thermoplastics. Advances in Polymer Technology, 30(3), p234-243.
63.Ranganathan, P., Chen, C., Tasi, M., Rwei, S., Lee, Y. (2021). Biomass Thermoplastic (Co)polyamide Elastomers Synthesized from a Fatty Dimer Acid: a Sustainable Route toward a New Era of Uniform and Bimodal Foams. Ind. Eng. Chem. Res., 60(33), p12139–12154.
64.Li, S., Jiang, S., Gong, S., Ma, S., Yang, H., Pan, K., Deng, J. (2021). Preparation Methods, Performance Improvement Strategies, and Typical Applications of Polyamide Foams. Ind. Eng. Chem. Res., 60(48), p17365–17378.
65.Ma, Y., Wen, H., Xin, C., He, Y. (2022). Chain extension of thermoplastic polyamide elastomer and its foaming performance. Applied Polymer, 139(22), p52233.
66.Maio, E., Kiran, E. (2018). Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. The Journal of Supercritical Fluids, 134, p157-166.
67.Jin, F., Zhao, M., Park, M., Park, S. (2019). Recent Trends of Foaming in Polymer Processing: A Review, Polymers, 11(6), p953.
68.Kundra, P., Upreti, S. R., Lohi, A., Wu, J. Experimental Determination of Composition-Dependent Diffusivity of Carbon Dioxide in Polypropylene. J. Chem. Eng. Data 2011, 56(1), p21-26.
69.Sato, Y., Takikawa, T., Takishima, S., Masuoka, H. (2001). Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. The journal of Supercritical fluid, 19(2), p187-198.
70.Lee, J. H., Mahmood, S. H., Pin, J. M., Li, R., Lee, P. C., Park, C. B. (2022). Determination of CO2 solubility in semi-crystalline polylactic acid with consideration of rigid amorphous fraction. Int J Biol Macromol, 204, p274-283.
71.Colton, J. S., Suh N. P. (1987). Nucleation of microcellular foam: Theory and practice. Polymer Engineering & Science, 27(7), p500-503.
72.Costeux, S. (2014). CO2-blown nanocellular foams. Journal of Applied Polymer Science, 132(16).
73.Tammaro, D., Astarita, A., Maio, E., Iannace, S. (2016). Polystyrene Foaming at High Pressure Drop Rates. Ind. Eng. Chem. Res., 55(19), p5696–5701.
74.Okolieocha, C., Raps, D., Subramaniam, K., Altstädt, V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal 2015, 73, p500-519.
75.Li, R., Zeng, D., Liu, Q., Li, L., Fang, T. (2015). Physical properties of microcellular polymeric foams with supercritical CO2. Materials Research Innovations, 19(sup5), S5-250-S5-256.
76.Bhattacharya, S., Gupta, R. K., Jollands, M., Bhattacharya, S. N. Foaming behavior of high-melt strength polypropylene/clay nanocomposites. Polymer Engineering & Science 2009, 49(10), p2070-2084.
77.Wang, L., Wu, Y. K., Ai, F. F., Fan, J., Xia, Z. P., Liu, Y. Hierarchical Porous Polyamide 6 by Solution Foaming: Synthesis, Characterization and Properties. Polymers (Basel) 2018, 10(12).
78.Park, C. B., Baldwin, D. F., Suh N. P. (1995). Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering & Science, 35(5), p432-440.
79.Yeh, S. (2021). Polymeric Foams: Technology and Developments in Regulation, Process, and Products. SMART Molding.
80.Gedler, G., Antunes, M., Velasco, J. (2014). Polycarbonate foams with tailor-made cellular structures by controlling the dissolution temperature in a two-step supercritical carbon dioxide foaming process. The Journal of Supercritical Fluids, 88, p66-73.
81.Kim, D. B., Lee, G. T., Lee, I. H., Cho, H. Y. (2015). Finite Element Analysis for Fracture Criterion of PolyJet Materials. Journal of the Korean Society of Manufacturing Process Engineers, 14(4), p134-139.
82.Costeux, S., Zhu, L. Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer 2013, 54 (11), p2785-2795.
83.Yang, J., Dong, W., Luan, Y., Liu, S., Guo, X., Zhao, X., Su, W. (2002). Crystallization and crosslinking of polyamide-1010 under elevated pressure. Journal of Applied Polymer Science, 83(12), p2522-2527.
84.Lee, Y., Lee, C., Chou, C., Lin, C., Chen, Y., Chen, C., Way, T., Rwei, S., Sustainable polyamide elastomers from a bio-based dimer diamine for fabricating highly expanded and facilely recyclable microcellular foams via supercritical CO2 foaming. European Polymer Journal 2021, p160.

電子全文 電子全文(網際網路公開日期:20280814)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top