|
1.Weber, J. N. (2000). Polyamides. General. Kirk-Othmer Encyclopedia of Chemical Technology, (Ed.), p. 56666. 2.Marchildon, K. Polyamides – Still Strong After Seventy Years. Macromolecular Reaction Engineering 2011, 5(1), 22-54. 3.Kohan, M. I. (1995). Nylon Plastics Handbook, Hanser, New York. 4.Faridirad, F., Ahmadi, S., Barmar, M. (2017). Polyamide/Carbon Nanoparticles Nanocomposites: A Review. Polymer Engineering & Science, 57(5), p475-494. 5.Jiang, J., Tang, Q., Pan, X., Xi, Z., Zhao, L., Yuan, W. Structure and Morphology of Thermoplastic Polyamide Elastomer Based on Long-Chain Polyamide 1212 and Renewable Poly(trimethylene glycol). Ind. Eng. Chem. Res. 2020, 59, 39, 17502–17512. 6.Yuan, R., Fan, S., Wu, D., Wang, X., Yu, J., Chen, L., Li, F. Facile synthesis of polyamide 6 (PA6)-based thermoplastic elastomers with a well-defined microphase separation structure by melt polymerization. Polym. Chem. 2018, 9, 1327. 7.J, W., K, P. The Polyamide Market. Fiber and Textiles in Eastern Europe 2016, 24(6), 12-18. 8.Garcia, J. M., Garcia, F. C., Serna, F., Pena, J. L. (2010). High-performance aromatic polyamides. Progress in Polymer Science. 35, 5, p511-686. 9.Harmsen, P. F. H., Hackmann, M. M., Bos, H. L. Green building blocks for bio-based plastics 2014, 8, 306. 10.Samantaray, S. K., Satapathy, B. K. Ultratoughening of Biobased Polyamide 410. ACS Omega 2020, 5, 10, 5306–5317. 11.Moran, C. S., Barthelon, A., Pearsall, A., Mittal, V., Dorgan, J. R. Biorenewable blends of polyamide-4,10 and polyamide-6,10. Applied Polymer 2016, 133, 45. 12.Jian, X. Y., An, X. P., Li, Y. D., Chen, J. H., Wang, M., Zeng, J. B. (2017). All Plant Oil Derived Epoxy Thermosets with Excellent Comprehensive Properties. Macromolecules, 50, p5729– 5738. 13.Spontak, R. J., Patel, N. P. (2000). Thermoplastic elastomers: fundamentals and applications. Collid & interface science, 5(5), p333-340. 14.Ibrahim, A., Dahlan, M. (1998). Thermoplastic natural rubber blends, 23(4), p665-706. 15.Holden, G. Thermoplastic Elastomers. In Applied Plastics Engineering Handbook 2017, p91-107. 16.Handlin, J. D. L. (2001). Thermoplastic Elastomers, Encyclopedia of Materials: Science and Technology, p9197-9204. 17.Wen, Y., Li, D., Yang, J., Yan, G., Wang, X., Liu, S., Zhang, G. (2023). Polyether Amide Thermoplastic Elastomer: Nucleophilic Substitution Polymerization and Properties. Ind. Eng. Chem. Res. 18.Yang, Y., Kong, W., Cai, X. (2017). Preparation and characterization of a new class of poly(ether-block-amide)s via solvent free reactive processing. Polymers advanced technologies, 29(1), p490-496. 19.Chen, G., Su, Q., Zhao, J., Zhang, Z., Zhang, J., Wan, T. (2014). Synthesis and characterization of segmented poly(ether ester amide)s from diglycol, adipic acid, and a nylon-6 oligomer. Polymer Engineering & Science, 55(4), p763-770. 20.Yeh, F., Hsiao, B. S., Sauer, B. B., Michel, S ., Siesler, H. W. (2003). Macromolecules, 36, p1940–1954. 21.Sheth, J. P., Xu, J., Wilkers, G. L. Solid state structure–property behavior of semicrystalline poly(ether-block-amide) PEBAXw thermoplastic elastomers. Polymer 2003, 44(3), p743-756. 22.Li, H., Cai, X. Effect of block molecular weight on the mechanical properties of PA1010-b-PEG segmented block copolymers. Advanced Materials Research 2012, 512-515(3), p2127-2130. 23.Gong, S., Zhao, S., Chen, X., Liu, H., Deng, J., Li, S., Feng, X., Li, Y., Wu, X., Pan, K. Thermoplastic Polyamide Elastomers: Synthesis, Structures/Properties, and Applications. Macromolecular Materials and Engineering 2021, 306(12). 24.Gandini, A., Lacerda, T. M., Carvalho, A. J. F., Trovatti, E. (2016). Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chem. Rev., 116(3), p1637-1669. 25.Mülhaupt, R. (2013). Green polymer chemistry and bio-based plastics: Dreams and reality. Macromolecular. Chem. Phys., 214, p159–174. 26.Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41, p1538–1558. 27.Jiang, Y., Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers 2016, 8(7), 243 28.Babu, R. P., O'Connor, K., Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, (18)2, p8. 29.Tokiwa, Y., Calabia, B. P.,Ugwu, C. U., Aiba, S. (2009). Biodegradability of Plastics. Int. J. Mol. Sci., 10, p3722-3742. 30.Prieto, A. (2016). To be, or not to be biodegradable… that is the question for the bio-based plastics. Microbial Biotechnol, 9(5), p652-657. 31.Zhao, X., Cornish, K., Vodovotz Y. (2020). Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environmental Science & Technology, 54(8), p4712-4732. 32.Rosenboom, J., Langer, R., Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, p117-137. 33.Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B., Patel, M. K. (2012). A Review of the Environmental Impacts of Biobased Materials. Industrial Ecolocy, 16(1), p169-181. 34.Karan, H., Funk, C., Grabert, M., Oey, M., Hankamer, B. (2019). Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science, 24(3), p237-249. 35.Hottle, T. A., Bilec, M. M., Landis A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), p1898-1907. 36.Froidevaux, V., Negrell, C., Caillol, S., Pascault, J., Boutevin, B. (2016). Biobased Amines: From Synthesis to Polymers; Present and Future. Chem. Rev., 116(22), p14181–14224. 37.Iwata, T. (2015). Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angewandte Chemie, 54(11), p3210-3215. 38.Hatti-Kaul, R., Nilsson, L. J., Zhang, B., Rehnberg, N., Lundmark, S. Designing Biobased Recyclable Polymers for Plastics. Trends in Biotechnology 2020, 38(1), p50-67. 39.Lambert, S., Wanger, M. (2017). Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 46(22), p6855-6871. 40.Imre, B., Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), p1215-1233. 41.MacArthur, E., McKinsey. (2016). The new plastics economy — rethinking the future of plastics. World Economic Forum. 42.Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T., Chen, E. Y. X. (2022). Bio-based polymers with performance-advantaged properties. Nature Reviews Materials, 7, p83-103. 43.Raschka, A., Carus, M., Piotrowski S. Renewable Raw Materials and Feedstock for Bioplastics. Bio-Based Plastics: Materials and Applications 2013, 214(2), p159-174. 44.Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., Smith, D. L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews 2021, 139, p110691. 45.Sardon, H., Mecerreyes, D., Basterretxea, A., Avérous, L., Jehanno C. (2021). From Lab to Market: Current Strategies for the Production of Biobased Polyols. ACS Sustainable Chem. Eng., 9(32), p10664–10677. 46.Ogunniyi, D. S. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), p1086-1091. 47.Bhukya, G., Kaki, S. (2022). Design and Synthesis of Sebacic Acid from Castor Oil by New Alternate Route. European Journal of Lipid Science and Technology, 124(5), p 2100244. 48.Yu, S., Cui, J., Wang, X., Zhong, C., Li, Y., Yao, J. (2020). Preparation of Sebacic Acid via Alkali Fusion of Castor Oil and its Several Derivatives. JAOCS, 97(6), p663-670. 49.Naughton, F. C. (1974). Production, chemistry, and commercial applications of various chemicals from castor oil. Journal of the American Oil Chemists Society, 51, p65-71. 50.Mutlu, H., Michael, Meier, A. R. (2010). Castor oil as a renewable resource for the chemical industry. European Journal of Lipid Science and Technology, 112(1), p10-30. 51.Brehmer, B. Polyamides from Biomass Derived Monomers. Bio-Based Plastics: Materials and Applications 2013, p275-293. 52.Mubofu, E. B. Castor oil as a potential renewable resource for the production of functional materials. Sustain Chem Process 2016, 4(11). 53.Winnacker, M., Rieger B. (2016). Biobased Polyamides: Recent Advances in Basic and Applied Research. Macromolecular Rapid Communications, 37(17), p1391-1413. 54.Genas, M. (1962). Rilsan (Polyamid 11), Synthese und Eigenschaften. Angewandte Chemie, 74(15), p535-540. 55.Jariyavidyanont, K., Focke, W., Androsch R. Thermal Properties of Biobased Polyamide 11. Advances in Polymer Science 2019, 283, p143-187. 56.Zuo, J., Li, S., Bouzidi, L., Narine, S. S. (2011). Thermoplastic polyester amides derived from oleic acid. Polymer, 52(20), p4503-4516. 57.Tang, S., Li, J., Wang, R., Zhang, J., Lu, Y., Hu, G., Wang, Z., Zhang, L. (2022). Current trends in bio-based elastomer materials. SusMat, 2(1), p2-33. 58.Liu, Q., Tian, M., Ding, T., Shi, R., Zhang, L. (2005). Preparation and characterization of a biodegradable polyester elastomer with thermal processing abilities. Applied Polymer, 98(5), p2033-2041. 59.Raps, D., Hossieny, N., Park, C. B., Altstädt, V. (2015).Past and present developments in polymer bead foams and bead foaming technology. Polymer, 56(15), p5-19. 60.ROSSACCI, J., SHIVKUMAR S. (2003). Bead fusion in polystyrene foams. Materials Science, 38, p201-206. 61.Lee, L., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G., (2005). Polymer nanocomposite foams Composites. Science and Technology, 65(15-16), p2344-2363. 62.Sorrentino, L., Aurilia, M., Iannace, S. (2011). Polymeric foams from high-performance thermoplastics. Advances in Polymer Technology, 30(3), p234-243. 63.Ranganathan, P., Chen, C., Tasi, M., Rwei, S., Lee, Y. (2021). Biomass Thermoplastic (Co)polyamide Elastomers Synthesized from a Fatty Dimer Acid: a Sustainable Route toward a New Era of Uniform and Bimodal Foams. Ind. Eng. Chem. Res., 60(33), p12139–12154. 64.Li, S., Jiang, S., Gong, S., Ma, S., Yang, H., Pan, K., Deng, J. (2021). Preparation Methods, Performance Improvement Strategies, and Typical Applications of Polyamide Foams. Ind. Eng. Chem. Res., 60(48), p17365–17378. 65.Ma, Y., Wen, H., Xin, C., He, Y. (2022). Chain extension of thermoplastic polyamide elastomer and its foaming performance. Applied Polymer, 139(22), p52233. 66.Maio, E., Kiran, E. (2018). Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. The Journal of Supercritical Fluids, 134, p157-166. 67.Jin, F., Zhao, M., Park, M., Park, S. (2019). Recent Trends of Foaming in Polymer Processing: A Review, Polymers, 11(6), p953. 68.Kundra, P., Upreti, S. R., Lohi, A., Wu, J. Experimental Determination of Composition-Dependent Diffusivity of Carbon Dioxide in Polypropylene. J. Chem. Eng. Data 2011, 56(1), p21-26. 69.Sato, Y., Takikawa, T., Takishima, S., Masuoka, H. (2001). Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. The journal of Supercritical fluid, 19(2), p187-198. 70.Lee, J. H., Mahmood, S. H., Pin, J. M., Li, R., Lee, P. C., Park, C. B. (2022). Determination of CO2 solubility in semi-crystalline polylactic acid with consideration of rigid amorphous fraction. Int J Biol Macromol, 204, p274-283. 71.Colton, J. S., Suh N. P. (1987). Nucleation of microcellular foam: Theory and practice. Polymer Engineering & Science, 27(7), p500-503. 72.Costeux, S. (2014). CO2-blown nanocellular foams. Journal of Applied Polymer Science, 132(16). 73.Tammaro, D., Astarita, A., Maio, E., Iannace, S. (2016). Polystyrene Foaming at High Pressure Drop Rates. Ind. Eng. Chem. Res., 55(19), p5696–5701. 74.Okolieocha, C., Raps, D., Subramaniam, K., Altstädt, V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal 2015, 73, p500-519. 75.Li, R., Zeng, D., Liu, Q., Li, L., Fang, T. (2015). Physical properties of microcellular polymeric foams with supercritical CO2. Materials Research Innovations, 19(sup5), S5-250-S5-256. 76.Bhattacharya, S., Gupta, R. K., Jollands, M., Bhattacharya, S. N. Foaming behavior of high-melt strength polypropylene/clay nanocomposites. Polymer Engineering & Science 2009, 49(10), p2070-2084. 77.Wang, L., Wu, Y. K., Ai, F. F., Fan, J., Xia, Z. P., Liu, Y. Hierarchical Porous Polyamide 6 by Solution Foaming: Synthesis, Characterization and Properties. Polymers (Basel) 2018, 10(12). 78.Park, C. B., Baldwin, D. F., Suh N. P. (1995). Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering & Science, 35(5), p432-440. 79.Yeh, S. (2021). Polymeric Foams: Technology and Developments in Regulation, Process, and Products. SMART Molding. 80.Gedler, G., Antunes, M., Velasco, J. (2014). Polycarbonate foams with tailor-made cellular structures by controlling the dissolution temperature in a two-step supercritical carbon dioxide foaming process. The Journal of Supercritical Fluids, 88, p66-73. 81.Kim, D. B., Lee, G. T., Lee, I. H., Cho, H. Y. (2015). Finite Element Analysis for Fracture Criterion of PolyJet Materials. Journal of the Korean Society of Manufacturing Process Engineers, 14(4), p134-139. 82.Costeux, S., Zhu, L. Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer 2013, 54 (11), p2785-2795. 83.Yang, J., Dong, W., Luan, Y., Liu, S., Guo, X., Zhao, X., Su, W. (2002). Crystallization and crosslinking of polyamide-1010 under elevated pressure. Journal of Applied Polymer Science, 83(12), p2522-2527. 84.Lee, Y., Lee, C., Chou, C., Lin, C., Chen, Y., Chen, C., Way, T., Rwei, S., Sustainable polyamide elastomers from a bio-based dimer diamine for fabricating highly expanded and facilely recyclable microcellular foams via supercritical CO2 foaming. European Polymer Journal 2021, p160.
|