跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡世昕
研究生(外文):HU, SHIH-SHIN
論文名稱:複合式多任務學習最佳化訓練策略-調節共用骨幹網路衝突與失衡梯度
論文名稱(外文):A Composite Multi-task Learning Strategy – Mitigating Gradient Confliction and Imbalance on Shared Backbone Parameters
指導教授:陳彥霖陳彥霖引用關係
指導教授(外文):CHEN, YEN-LIN
口試委員:陳彥霖廖弘源王建堯黃志勝
口試委員(外文):CHEN, YEN-LINLIAO, HONG-YUANWANG, CHIEN-YAOHUANG, CHIH-SHENG
口試日期:2023-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:52
中文關鍵詞:多任務學習電腦視覺骨幹網路
外文關鍵詞:Multi-task LearningComputer VisionBackbone Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
1 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文架構 3
2 第二章 文獻探討 4
2.1 調節梯度衝突策略 4
2.1.1 PCGrad 4
2.1.2 Recon 7
2.2 梯度修正方向最佳化策略 9
2.2.1 MGDA 9
2.2.2 CAGrad 10
2.3 梯度量級平衡策略 11
2.3.1 DWA 11
2.3.2 GradNorm 12
2.3.3 AdaTask 12
3 第三章 研究方法 14
3.1 複合式多任務學習策略 14
3.1.1 取得共享參數層任務梯度 14
3.1.2 調節衝突梯度 15
3.1.3 梯度方向最佳化 16
3.1.4 平衡梯度量級 18
3.1.5 複合式多任務學習策略流程 19
3.2 通道梯度衝突調節機制 24
3.2.1 模型通道衝突概念 24
3.2.2 通道梯度衝突紀錄 27
3.2.3 通道梯度衝突選定 30
3.2.4 通道梯度向量衝突調節策略 33
4 第四章 實驗與分析 34
4.1 資料集 34
4.1.1 CityScapes公開資料集 34
4.1.2 NYUv2公開資料集 34
4.2 模型準確度指標 35
4.2.1 單任務準確度指標 35
4.2.2 多任務策略指標 38
4.3 實驗數據與分析 39
4.3.1 SegNet骨幹網路雙任務模型實驗 40
4.3.2 MTAN骨幹網路三任務模型實驗 41
4.3.3 PSPNet骨幹網路三任務實驗 44
4.3.4 YOLOv7骨幹網路三任務模型實驗 46
5 第五章 結論與未來工作 48
5.1 結論 48
5.2 未來工作 49
參考文獻 50

[1]R. Caruana, "Multitask learning," Machine learning, vol. 28, pp. 41-75, 1997.
[2]Y. Zhang and Q. Yang, "An overview of multi-task learning," National Science Review, vol. 5, no. 1, pp. 30-43, 2018.
[3]T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton, "Backpropagation and the brain," Nature Reviews Neuroscience, vol. 21, no. 6, pp. 335-346, 2020.
[4]T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, "Gradient surgery for multi-task learning," Advances in Neural Information Processing Systems, vol. 33, pp. 5824-5836, 2020.
[5] S. Guangyuan, Q. Li, W. Zhang, J. Chen, and X.-M. Wu, "Recon: Reducing Conflicting Gradients From the Root For Multi-Task Learning," in The Eleventh International Conference on Learning Representations, 2022.
[6]Z. Chen et al., "Just pick a sign: Optimizing deep multitask models with gradient sign dropout," Advances in Neural Information Processing Systems, vol. 33, pp. 2039-2050, 2020.
[7]B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, "Conflict-averse gradient descent for multi-task learning," Advances in Neural Information Processing Systems, vol. 34, pp. 18878-18890, 2021.
[8]O. Sener and V. Koltun, "Multi-task learning as multi-objective optimization," Advances in neural information processing systems, vol. 31, 2018.
[9] M. Cordts et al., "The cityscapes dataset for semantic urban scene understanding," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3213-3223.
[10]M. Ehrgott, Multicriteria optimization. Springer Science & Business Media, 2005.
[11]H. M. Hochman and J. D. Rodgers, "Pareto optimal redistribution," The American economic review, vol. 59, no. 4, pp. 542-557, 1969.
[12] M. Jaggi, "Revisiting Frank-Wolfe: Projection-free sparse convex optimization," in International conference on machine learning, 2013: PMLR, pp. 427-435.
[13] S. Liu, E. Johns, and A. J. Davison, "End-to-end multi-task learning with attention," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 1871-1880.
[14] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, "Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks," in International conference on machine learning, 2018: PMLR, pp. 794-803.
[15] E. Yang et al., "Adatask: A task-aware adaptive learning rate approach to multi-task learning," in Proceedings of the AAAI Conference on Artificial Intelligence, 2023, vol. 37, no. 9, pp. 10745-10753.
[16]V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation," IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481-2495, 2017.
[17] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor segmentation and support inference from rgbd images," in Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, 2012: Springer, pp. 746-760.
[18] D. Senushkin, N. Patakin, A. Kuznetsov, and A. Konushin, "Independent Component Alignment for Multi-Task Learning," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 20083-20093.
[19] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene parsing network," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881-2890.
[20] A. Kendall, Y. Gal, and R. Cipolla, "Multi-task learning using uncertainty to weigh losses for scene geometry and semantics," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7482-7491.
[21]B. Lin, Y. Feiyang, and Y. Zhang, "A closer look at loss weighting in multi-task learning," 2021.
[22] L. Liu et al., "Towards impartial multi-task learning," 2021: iclr.
[23]A. Navon et al., "Multi-task learning as a bargaining game," arXiv preprint arXiv:2202.01017, 2022.
[24] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7464-7475.
電子全文 電子全文(網際網路公開日期:20250801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top