跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:ANUPRIYA JEYARAMAN
研究生(外文):ANUPRIYA JEYARAMAN
論文名稱:以碳二元過渡金屬磷化物作為動態電催化劑應用於有機磷農藥之電化學檢測
論文名稱(外文):Binary transition metal phosphides at carbon as a dynamic electrocatalyst for electrochemical detection of organophosphorous pesticide
指導教授:陳生明
指導教授(外文):CHEN, SHEN-MING
口試委員:曾添文駱碧秀連萬福鍾仁傑陳生明
口試委員(外文):JSENG, TIEN-WENLOU, BIH-SHOWLIEN, WAN-FUCHUNG, REN-JEICHEN, SHEN-MING
口試日期:2023-06-16
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:能源與光電材料外國學生專班(EOMP)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:94
中文關鍵詞:水熱法電催化劑修飾電極電化學檢測實樣分析
外文關鍵詞:Hydrothermal methodelectrocatalystmodified electrodeelectrochemical detectionreal sample analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
ABSTRACT iii
Acknowledgements vii
Table of Contents x
List of Tables xiv
List of Figures xv
List of Schemes xix
Chapter 1 Introduction 1
1.1 Organophosphorus pesticides 1
1.1.1 Methyl Parathion 2
1.1.2 Fenitrothion 3
1.1.3 Paraoxon ethyl 3
1.2 Electrochemical sensor 4
1.3 Transition metal Phosphides 5
1.3.1 Cobalt phosphide 6
1.4 Binary transition metal Phosphides 6
1.5 Carbon 7
1.6 Hydrothermal method 7
1.7 Phosphorization technique 8
1.8 Aim and objective of the present work 8
Chapter 2 Methods of Instrumentation 10
2.1 Characterization techniques 10
2.1.1 X-ray diffraction method (XRD) 10
2.1.2 Fourier-transform infrared spectroscopy (FT-IR) 11
2.1.3 X-ray Photoelectron Spectroscopy (XPS) 11
2.1.4 Field Emission Scanning Electron Microscopy (FESEM) 12
2.1.5 High Resolution Transmission Electron Microscopy (HRTEM) 13
2.2 Electrochemical Applications 14
2.2.1 Cyclic Voltammetry 15
2.2.2 Differential pulse voltammetry 15
2.2.3 Three electrode electrochemical system 16
Chapter 3 Construction of Manganese Cobalt Phosphide/C Coreshell for Electrochemical Detection of Hazardous Pesticide Methyl Parathion 17
3.1 Introduction 17
3.2 Experimental section 19
3.2.1 Chemicals and reagents 19
3.2.2 Synthesis of manganese cobalt glycerate and cobalt glycerate 20
3.2.3 Synthesis of manganese cobalt phosphate and cobalt phosphate 20
3.2.4 Electrode Fabrication 21
3.3 Results and discussions 21
3.3.1 XRD analysis 21
3.3.2 XPS analysis 23
3.3.3 HRTEM analysis 25
3.3.4 Electrocatalytic activity of MP at MnCoP/C/GCE 27
3.3.5 Electrocatalytic determination of MP at MnCoP/C/GCE 32
3.3.6 Repeatability, reproducibility, storage stability of MP 33
3.3.7 Real sample performance of MP 35
3.4 Conclusion 37
Chapter 4 Self-Decorated Iron Cobalt Phosphide/C Coreshell-Enhanced Electrochemical Detection of Harmful Organophosphorus Pesticide Fenitrothion 39
4.1 Introduction 39
4.2 Experimental section 41
4.2.1 Chemicals and reagents 41
4.2.2 Synthesis of iron cobalt phosphide/C coreshell (FCP/C) 41
4.2.3 Electrode Fabrication 42
4.3 Results and discussions 43
4.3.1 XRD analysis 43
4.3.2 FESEM and HRTEM analysis 44
4.3.3 XPS and BET analysis. 48
4.3.4 CV analysis of FN by FCP/C/GCE 50
4.3.5 Effect of scan rate investigation 51
4.3.6 Effect of pH study 53
4.3.7 Effect of FN concentration 54
4.3.8 Electrochemical Determination of FN by DPV analysis 54
4.3.9 Repeatability and selectivity of FN 56
4.3.10 Repeatability and storage stability of FN 57
4.3.11 Real sample analysis 58
4.4 Conclusion 60
Chapter 5 Self-Decorated Nickel Cobalt Phosphide at Carbon Coreshell Electrocatalyst: A Highly Sensitive Electrochemical Detection of Organophosphorus Pesticide Paraoxon Ethyl 61
5.1 Introduction 61
5.2 Experimental section 64
5.2.1 Chemicals and reagents 64
5.2.2 Synthesis of nickel cobalt phosphide/C 64
5.2.3 Electrode Fabrication 66
5.3 Results and discussion 66
5.3.1 XRD analysis 66
5.3.2 FESEM and HRTEM analysis 68
5.3.3 XPS analysis 72
5.3.4 Electrochemical CV analysis of PE at NCP/C/GCE 73
5.3.5 Electrochemical DPV analysis of PE 77
5.3.6 Repeatability, reproducibility and storage stability of PE 79
5.3.7 Real sample performance of PE 81
5.4 Conclusion 82
Chapter 6 83
6.1 References 83
Chapter 7 90
7.1 Summary and Conclusion 90
7.2 List of Publications 92


[1]A.G. Firth,, B.H. Baker,, J.P. Brooks,, R. Smith,, R.B. Iglay,, J.B. Davis, Agric. Ecosyst. Environ. 300 (2020) 106962.
[2]C. Wilson,, C. Tisdell, Ecol. Econ. 39(3) (2001) 449–62.
[3]Y. Zhu,, J. Wu,, L. Han,, X. Wang,, W. Li,, H. Guo,, H. Wei, Anal. Chem. 92(11) (2020) 7444–52.
[4]J. Riches, Best synthetic methods, Elsevier, 2015, pp. 721–52.
[5]L.H. Booth,, K. O’Halloran, Environ. Toxicol. Chem. An Int. J. 20(11) (2001) 2494–502.
[6]J.B. Belden,, M.J. Lydy, Environ. Toxicol. Chem. An Int. J. 19(9) (2000) 2266–74.
[7]S. Chauhan,, R. D’cruz,, S. Faruqi,, K.K. Singh,, S. Varma,, M. Singh,, V. Karthik, Environ. Toxicol. Pharmacol. 26(2) (2008) 113–22.
[8]D. Sharma,, N. Wangoo,, R.K. Sharma, Talanta 221 (2021) 121267.
[9]S.T. Narenderan,, S.N. Meyyanathan,, B. Babu, Food Res. Int. 133 (2020) 109141.
[10]J. Kaur,, P.K. Singh, Phys. Chem. Chem. Phys. 22(27) (2020) 15105–19.
[11]T. Kokulnathan,, T.-J. Wang,, N. Duraisamy,, E.A. Kumar, J. Hazard. Mater. 412 (2021) 125257.
[12]J. V Piovesan,, V.F. Haddad,, D.F. Pereira,, A. Spinelli, J. Electroanal. Chem. 823 (2018) 617–23.
[13]K. Jaga,, C. Dharmani, Rev. Environ. Health 21(1) (2006) 57–68.
[14]R. Kalsoom,, N. Sial,, F. Maqbool,, A. Mubeen,, T. Khan,, A. Sharif,, A. Zafar, (n.d.).
[15]V. Renganathan,, R. Balaji,, S.-M. Chen,, T. Kokulnathan, Sensors Actuators B Chem. 307 (2020) 127586.
[16]N. Zhang,, Y. Li,, J. Xu,, J. Li,, B. Wei,, Y. Ding,, I. Amorim,, R. Thomas,, S.M. Thalluri,, Y. Liu, ACS Nano 13(9) (2019) 10612–21.
[17]X. Li,, A.M. Elshahawy,, C. Guan,, J. Wang, Small 13(39) (2017) 1701530.
[18]Z. Yang,, L. Liu,, X. Wang,, S. Yang,, X. Su, J. Alloys Compd. 509(1) (2011) 165–71.
[19]S. Carenco,, D. Portehault,, C. Boissiere,, N. Mezailles,, C. Sanchez, Chem. Rev. 113(10) (2013) 7981–8065.
[20]K. Zhou,, W. Zhou,, L. Yang,, J. Lu,, S. Cheng,, W. Mai,, Z. Tang,, L. Li,, S. Chen, Adv. Funct. Mater. 25(48) (2015) 7530–8.
[21]S.T. Oyama,, T. Gott,, H. Zhao,, Y.-K. Lee, Catal. Today 143(1–2) (2009) 94–107.
[22]S. Tian,, X. Li,, A. Wang,, R. Prins,, Y. Chen,, Y. Hu, Angew. Chemie Int. Ed. 55(12) (2016) 4030–4.
[23]L. Zhi,, J. Tu,, J. Li,, M. Li,, J. Liu, J. Colloid Interface Sci. 616 (2022) 379–88.
[24]Y. Pan,, Y. Lin,, Y. Chen,, Y. Liu,, C. Liu, J. Mater. Chem. A 4(13) (2016) 4745–54.
[25]I.K. Mishra,, H. Zhou,, J. Sun,, F. Qin,, K. Dahal,, J. Bao,, S. Chen,, Z. Ren, Energy Environ. Sci. 11(8) (2018) 2246–52.
[26]Z. Liang,, C. Qu,, W. Zhou,, R. Zhao,, H. Zhang,, B. Zhu,, W. Guo,, W. Meng,, Y. Wu,, W. Aftab, Adv. Sci. 6(8) (2019) 1802005.
[27]J. Anupriya,, S. Velmurugan,, S.-M. Chen,, Y.-B. Hahn, Compos. Part B Eng. (2022) 110079.
[28]C. Karaman, Electroanalysis 33(5) (2021) 1356–69.
[29]R. Liu,, H. Zhang,, S. Liu,, X. Zhang,, T. Wu,, X. Ge,, Y. Zang,, H. Zhao,, G. Wang, Phys. Chem. Chem. Phys. 18(5) (2016) 4095–101.
[30]J. Tang,, T. Wang,, R.R. Salunkhe,, S.M. Alshehri,, V. Malgras,, Y. Yamauchi, Chem. Eur. J. 21(48) (2015) 17293–8.
[31]S.M. Babulal,, J. Anupriya,, S.M. Chen, Chemosphere (2022) 135203.
[32]J. Jiang,, Q. Fan,, Z. Zheng,, M.R. Kaiser,, Q. Gu,, S. Chou,, K. Konstantinov,, J. Wang, ACS Appl. Energy Mater. 3(7) (2020) 6447–59.
[33]J. Tong,, W. Ma,, L. Bo,, T. Li,, W. Li,, Y. Li,, Q. Zhang, J. Power Sources 441 (2019) 227166.
[34]X. Gui,, Y. Chen,, Z. Zhang,, L. Lei,, F. Zhu,, W. Yang,, Y. Guo,, M. Chu, Biomaterials 248 (2020) 120009.
[35]S.P. Sivaji,, A. Jeyaraman,, S.-M. Chen,, S. Velmurugan, Colloids Surfaces A Physicochem. Eng. Asp. (2023) 131335.
[36]A.A. Bunaciu,, E.G. UdriŞTioiu,, H.Y. Aboul-Enein, Crit. Rev. Anal. Chem. 45(4) (2015) 289–99.
[37]P.R. Griffiths, Science (80-. ). 222(4621) (1983) 297–302.
[38]C.S. Fadley, J. Electron Spectros. Relat. Phenomena 178 (2010) 2–32.
[39]K.A. Afanou,, A. Straumfors,, A. Skogstad,, I. Skaar,, L. Hjeljord,, Ø. Skare,, B.J. Green,, A. Tronsmo,, W. Eduard, Aerosol Sci. Technol. 49(6) (2015) 423–35.
[40]A. Thust,, W.M.J. Coene,, M.O. De Beeck,, D. Van Dyck, Ultramicroscopy 64(1–4) (1996) 211–30.
[41]F. Marken,, A. Neudeck,, A.M. Bond, Electroanal. Methods Guid. to Exp. Appl. (2010) 57–106.
[42]F.R. Simões,, M.G. Xavier, Nanosci. Its Appl. 1 (2017) 155–78.
[43]C.S. Pundir,, A. Malik, Biosens. Bioelectron. 140 (2019) 111348.
[44]Z. Chen,, Y. Zhang,, Y. Yang,, X. Shi,, L. Zhang,, G. Jia, Sensors Actuators B Chem. 336 (2021) 129721.
[45]D. De Souza,, S.A.S. Machado, Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal. 18(9) (2006) 862–72.
[46]D. Silva,, C.M. Cortez,, J. Cunha-Bastos,, S.R.W. Louro, Toxicol. Lett. 147(1) (2004) 53–61.
[47]G.E. Quinby,, A.B. Lemmon, J. Am. Med. Assoc. 166(7) (1958) 740–6.
[48]G. Liu,, Y. Lin, Anal. Chem. 77(18) (2005) 5894–901.
[49]F. Li,, R. Liu,, V. Dubovyk,, Q. Ran,, H. Zhao,, S. Komarneni, Food Chem. 384 (2022) 132643.
[50]D. Castilla-Fernández,, D. Moreno-González,, B. Gilbert-López,, J.F. García-Reyes,, A. Molina-Díaz, Food Chem. 365 (2021) 130486.
[51]A. Azzouz,, L.P. Colón,, B. Souhail,, E. Ballesteros, Environ. Res. 178 (2019) 108727.
[52]L. Chen,, X. Dang,, Y. Ai,, H. Chen, J. Sep. Sci. 41(18) (2018) 3508–14.
[53]T. Mouskeftara,, C. Virgiliou,, A. Iakovakis,, N. Raikos,, H.G. Gika, J. Chromatogr. B 1179 (2021) 122824.
[54]J. Wang,, M.P. Chatrathi,, A. Mulchandani,, W. Chen, Anal. Chem. 73(8) (2001) 1804–8.
[55]J. Anupriya,, N. Karuppusamy,, S.-M. Chen,, K.-Y. Lin, J. Environ. Chem. Eng. 10(6) (2022) 108800.
[56]R. Shanmugam,, C. Koventhan,, S.-M. Chen,, W. Hung, Chem. Eng. J. 446 (2022) 136909.
[57]H. Shao,, N. Padmanathan,, D. McNulty,, C. O’Dwyer,, K.M. Razeeb, ACS Appl. Energy Mater. 2(1) (2018) 569–78.
[58]W. Zilong,, Z. Zhu,, J. Qiu,, S. Yang, J. Mater. Chem. C 2(7) (2014) 1331–6.
[59]Y.V. Kaneti,, Y. Guo,, N.L.W. Septiani,, M. Iqbal,, X. Jiang,, T. Takei,, B. Yuliarto,, Z.A. Alothman,, D. Golberg,, Y. Yamauchi, Chem. Eng. J. 405 (2021) 126580.
[60]N. Karuppusamy,, V. Mariyappan,, S.M. Chen,, M. Das Thangamuthu,, R.-H. Li, Surfaces and Interfaces 37 (2023) 102681.
[61]W. Zhang,, C. Yu,, L. Chang,, W. Zhong,, W. Yang, Electrochim. Acta 282 (2018) 642–52.
[62]P. Qi,, J. Wang,, X. Wang,, X. Wang,, Z. Wang,, H. Xu,, S. Di,, Q. Wang,, X. Wang, Electrochim. Acta 292 (2018) 667–75.
[63]B. Zhang,, J. Yan,, Y. Shang,, Z. Wang, Macromolecules 51(5) (2018) 1769–76.
[64]M.Z.M. Nasir,, C.C. Mayorga-Martinez,, Z. Sofer,, M. Pumera, ACS Nano 11(6) (2017) 5774–84.
[65]M.P.M. Itkes,, G.G. de Oliveira,, T.A. Silva,, O. Fatibello-Filho,, B.C. Janegitz, J. Electroanal. Chem. 840 (2019) 21–6.
[66]J. Vinoth Kumar,, R. Karthik,, S.-M. Chen,, K. Natarajan,, C. Karuppiah,, C.-C. Yang,, V. Muthuraj, ACS Appl. Mater. Interfaces 10(18) (2018) 15652–64.
[67]N. Tizro,, E. Moniri,, K. Saeb,, H.A. Panahi,, S.S. Ardakani, Microchem. J. 145 (2019) 59–67.
[68]S. Mahpishanian,, H. Sereshti, J. Chromatogr. A 1443 (2016) 43–53.
[69]F. Malhat,, J. Boulangé,, E. Abdelraheem,, O. Abd Allah,, R. Abd El-Hamid,, S. Abd El-Salam, Food Chem. 229 (2017) 814–9.
[70]H.İ. Ulusoy,, K. Köseoğlu,, A. Kabir,, S. Ulusoy,, M. Locatelli, Microchim. Acta 187 (2020) 1–11.
[71]J. Zhang,, L. Zhang,, W. Wang,, Z. Chen, J. AOAC Int. 99(3) (2016) 760–5.
[72]J. Anupriya,, N. Karuppusamy,, T.-W. Chen,, S.-M. Chen,, K. Balamurugan,, M. Akilarasan,, X. Liu,, J. Yu, Chemosphere 313 (2023) 137553.
[73]S. Velmurugan,, J. Anupriya,, S.-M. Chen,, Y.-B. Hahn, Sensors Actuators B Chem. 375 (2023) 132920.
[74]K. Zhan,, C. Feng,, X. Feng,, D. Zhao,, S. Yue,, Y. Li,, Q. Jiao,, H. Li,, Y. Zhao, ACS Sustain. Chem. Eng. 8(16) (2020) 6273–81.
[75]L. Cao,, Y. Hu,, S. Tang,, A. Iljin,, J. Wang,, Z. Zhang,, T. Lu, Adv. Sci. 5(10) (2018) 1800949.
[76]B. Karupppaiah,, A. Jeyaraman,, S.-M. Chen,, Y.-C. Huang, Electrochim. Acta 446 (2023) 142008.
[77]D. Sharma,, P. Choudhary,, S. Kumar,, V. Krishnan, Small 19(11) (2023) 2207053.
[78]W. Li,, D. Xiong,, X. Gao,, L. Liu, Chem. Commun. 55(60) (2019) 8744–63.
[79]J. Xu,, J. Li,, D. Xiong,, B. Zhang,, Y. Liu,, K.-H. Wu,, I. Amorim,, W. Li,, L. Liu, Chem. Sci. 9(14) (2018) 3470–6.
[80]B. Karuppaiah,, A. Jeyaraman,, S.-M. Chen,, P.R. Chavan,, R. Karthik,, J.-J. Shim,, S.J. Park, Environ. Res. 222 (2023) 115343.
[81]A. Meng,, H. Zhang,, B. Huangfu,, W. Tian,, L. Sheng,, Z. Li,, S. Tan,, Q. Li, Prog. Nat. Sci. Mater. Int. 30(4) (2020) 461–8.
[82]S. Manavalan,, P. Veerakumar,, S.-M. Chen,, N. Karuppusamy, Nanoscale 14(43) (2022) 16233–48.
[83]X. Wei,, C. Li,, C. Wang,, S. Lin,, J. Wu,, M. Guo, Chem. Eng. J. 351 (2018) 31–9.
[84]L. Zhao,, C. Deng,, S. Xue,, H. Liu,, L. Hao,, M. Zhu, Chem. Eng. J. 402 (2020) 126223.
[85]A. Aghaie,, A. Khanmohammadi,, A. Hajian,, U. Schmid,, H. Bagheri, Food Anal. Methods 12 (2019) 1545–55.
[86]D.-H. Lee,, P.M. Lind,, D.R. Jacobs Jr,, S. Salihovic,, B. van Bavel,, L. Lind, Environ. Int. 89 (2016) 179–84.
[87]R.C. Spear,, W.J. Popendorf,, J.T. Leffingwell,, D. Jenkins, J. Agric. Food Chem. 23(4) (1975) 808–10.
[88]F. Habedank,, M. Abraham,, H. Tardel,, F. Feldhusen,, D.E. Schulz-Bull, Int. J. Environ. Anal. Chem. 97(9) (2017) 819–30.
[89]Q. Luo,, S. Wang,, L. Sun,, H. Wang, Environ. Sci. Pollut. Res. 25 (2018) 19546–54.
[90]D. Li,, M. Jiang,, L. Xu,, X. Qiao,, Z. Xu, Food Anal. Methods 10 (2017) 3368–74.
[91]J. Anupriya,, R. Rajakumaran,, S.M. Chen,, R. Karthik,, J.V. Kumar,, J.-J. Shim,, P.M. Shafi,, J.-W. Lee, Chemosphere 296 (2022) 133997.
[92]J. Anupriya,, R. Rajakumaran,, S.M. Chen,, T. Senthilkumar, Colloids Surfaces A Physicochem. Eng. Asp. 632 (2022) 127820.

電子全文 電子全文(網際網路公開日期:20280720)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 金屬氧化物摻雜富含氮之氮化碳奈米複合材料應用於醫藥廢棄物之電化學檢測及光催化降解分析
2. 異質電催化劑應用於電化學感測器、能量轉換及存儲
3. 用於檢測抗生素藥物的二維過渡金屬碳化物(MXenes)及碳奈米複合材料之電化學研究
4. 研究稀土鎢酸鹽基碳複合材料在電化學傳感性能的表現
5. 應用稀土金屬與過渡金屬氧化物奈米複合材料修飾電極於電化學感測之研究
6. 闡明鑭系元素硫屬化合物整合沸石咪唑架構作為電化學感測器和水分解應用雙功能的電催化劑性質
7. 開發一種以鹵氧化鉍為基底的高效能奈米催化表面結構並應用於表面增強拉曼光譜(SERS)和電化學之研究
8. 二元過渡金屬氧化物的電化學感測器用於檢測天然食物樣品中的抗氧化藥物
9. 探討人髮角蛋白以不同蛋白質組分混合後對纖維蛋白原在體外轉化為纖維蛋白之影響
10. 在石墨氮化碳研究無金屬摻雜影響作為電化學感測器
11. 鈣鈦礦結構鹼土金屬錫酸鹽的設計及應用於用於藥物和環境污染物電催化感測研究
12. 含鑭系元素錫酸鹽燒綠石奈米顆粒的特性及電化學感測應用研究
13. 以摻雜過渡金屬結合碳基奈米材料用於電化學感測和水分解之研究
14. 由表面工程增強催化性能並以一步水熱合成法製造之金屬硫化物電化學感測應用
15. 製備氫化鈦六鋁四釩合金應用於骨科植入物