跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭宇志
研究生(外文):CHENG, YU-CHIH
論文名稱:使用電流感測技術之自適應導通時間降壓轉換器設計
論文名稱(外文):Design of Adaptive On-Time Buck Converters with Current Sensing Techniques
指導教授:黃育賢
指導教授(外文):HWANG, YUH - SHYAN
口試委員:黃育賢陳建中邱弘緯郭建宏
口試委員(外文):HWANG, YUH - SHYANCHEN, JIANN-JONGCHIU, HUNG-WEIKUO,CHIEN-HUNG
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:83
中文關鍵詞:降壓轉換器切換式穩壓器自適應導通時間
外文關鍵詞:Buck ConverterDCR sensingRdson sensingAdaptive On time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著可攜式電子產品快速發展,這些產品變得越來越多元化,其中,電源管理是產品設計中重要的一環,其主要目的是能有效地降低電源損失,延長產品使用時間以及提高電池壽命,電源管理包括各種技術,如誤差放大器、比較器、驅動電路、功率電晶體、電路拓樸等等。在現今設備如智慧型手機、智慧型穿戴裝置、平板電腦等被廣泛應用的情況下,電源管理變得非常關鍵,能夠在效率足夠高的同時,盡可能地增加電池壽命,提高產品使用時間。
為了實現高效率的電源管理以及產品的效能,電路設計在面積上勢必要盡可能地縮小,影響電源管理模組大小的關鍵在於外接元件,如輸出電感、輸出電容,如果能夠將切換頻率提高,就能大大降低元件的尺寸,因此將切換頻率提高有助於電路微型化的目的,也能提供較低的線性、負載調節率的漣波電壓。
本次論文使用TSMC 0.18μm 1P6M製程時現高速暫態響應的Buck電路,能夠應用於可攜式電子產品,以及各類需要穩定電壓之設備。輸入範圍在2.4V~3.8V,輸出範圍在1-2V,負載電流50mA~500mA,切換頻率為1.5~2MHz,轉換效率最高可達87%,使用外接電感2.2uH以及輸出電容10uF,有效地降低被動元件尺寸。

In recent years, with the rapid development of portable electronic products, there has been a growing diversity in these products. Power management plays a crucial role in product design, aiming to effectively reduce power losses, prolong product usage time, and improve battery life. Power management involves various techniques such as error amplifiers, comparators, driver circuits, power transistors, and circuit topologies, among others. With the widespread use of devices such as smartphones, smart wearables, and tablets, power management has become increasingly critical, as it strives to maximize efficiency while maximizing battery life and product usage time.
To achieve efficient power management and optimal product performance, circuit designs need to minimize their footprint. External components such as output inductors and output capacitors have a significant impact on the size of power management modules. By increasing the switching frequency, the size of these components can be greatly reduced, thus promoting circuit miniaturization and providing lower ripple voltage for linear and load regulation.
In this thesis, a high-speed transient response Buck circuit was designed using TSMC 0.18μm 1P6M process technology. The circuit is suitable for portable electronic products and various devices that require stable voltage. The input range is 2.4V to 3.8V, the output range is 1V to 2V, the load current ranges from 50mA to 500mA, and the switching frequency is between 1.5MHz and 2MHz. The conversion efficiency can reach up to 87%. The circuit employs an external inductor of 2.2uH and an output capacitor of 10uF, effectively reducing the size of passive components.

摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
1 第一章 序論 1
1.1 研究背景與動機 1
1.2 直流-直流轉換器 1
1.3 論文架構 2
2 第二章 文獻探討 3
2.1 切換式穩壓器 3
2.1.1 降壓轉換器 3
2.1.2 固定導通時間降壓轉換器 4
2.1.3 自適應導通時間降壓轉換器 5
2.2 DCR電流感測 6
2.3 Rds,on電流感測 7
2.4 文獻回顧 8
2.4.1 高精度電流感測技術[3] 9
2.4.2 數位漣波控制下的自適應導通降壓轉換器[5] 10
2.4.3 低靜態電流與高效率的自適應降壓轉換器[6] 12
2.5 論文啟發與目標 14
3 第三章使用新型DCR電流感測自適應導通時間降壓轉換器 16
3.1 架構簡介 16
3.1.1 電感設計 17
3.1.2 電容設計 18
3.1.3 誤差放大器 19
3.1.4 新型DCR電流感測電路[10] 21
3.1.5 轉導放大器 23
3.1.6 電流誤差放大器 24
3.1.7 磁滯比較器 25
3.1.8 自適應導通時間電路 27
3.1.9 鎖相迴路電路 28
3.1.10 改良型SR栓鎖器 31
3.1.11 非重疊控制電路 32
3.1.12 驅動電路 34
3.1.13 功率電晶體 34
3.2 電路佈局 36
3.2.1 晶片佈局 36
3.2.2 晶片腳位與定義 38
4 第四章使用新型Rds,on電流感測自適應導通時間降壓轉換器 41
4.1 架構簡介 41
4.1.1 新型Rds,on電流感測電路 41
4.1.2 偏壓電路 42
4.1.3 帶差參考電路 44
4.2 電路佈局 47
4.2.1 晶片佈局 47
4.2.2 晶片腳位與定義 49
5 第五章 電路模擬與實驗結果 51
5.1 量測考量 51
5.2 量測環境 51
5.3 使用新型DCR電流感測結果 52
5.3.1 負載調節率模擬與量測 54
5.3.2 效率總結 62
5.3.3 設計規格表 63
5.3.4 文獻比較 64
5.4 使用新型Rds,on電流感測電路結果 65
5.4.1 負載調節率模擬與量測 65
5.4.2 效率總結 77
5.4.3 設計規格表 78
5.4.4 文獻比較 79
6 第六章 結論與未來展望 80
6.1 結論 80
6.2 未來展望 80
參考文獻 82


[1]K. H. Chen, Power Management Techniques for Integrated Circuit Design. Wiley, 2016.
[2]W.-H. Yang et al., "A constant-on-time control DC–DC buck converter with the pseudowave tracking technique for regulation accuracy and load transient enhancement," IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 6187-6198, 2017.
[3] Y.-S. Lee and C.-J. Hsu, "High accuracy CMOS current sensing circuit for current mode control buck converter," in 2007 7th International Conference on Power Electronics and Drive Systems, 2007: IEEE, pp. 44-48.
[4]C. F. Lee and P. K. Mok, "A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique," IEEE Journal of solid-state circuits, vol. 39, no. 1, pp. 3-14, 2004.
[5]M. P. Chan and P. K. Mok, "A monolithic digital ripple-based adaptive-off-time DC-DC converter with a digital inductor current sensor," IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1837-1847, 2014.
[6]W. Huang, L. Liu, X. Liao, C. Xu, and Y. Li, "A 240-nA Quiescent Current, 95.8% Efficiency AOT-Controlled Buck Converter With A 2-Comparator and Sleep-Time Detector for IoT Application," IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12898-12909, 2021.
[7]楊展懿, "使用電流平方與適應性導通時間控制之鎖相鎖頻技術降壓式轉換器與軌對軌電流感測技術之無差拍控制降壓式轉換器," 碩士, 電子工程系, 國立臺北科技大學, 台北市, 2019.
[8]S. Maniktala, Switching Power Supplies A-Z. Elsevier, 2012.
[9]切換式電源轉換器: 原理與實用設計技術(實例設計導向). 2015.
[10]J. J. Chen, Y. S. Hwang, H. W. Chiu, M. D. Luo, C. H. Lai, and J. Ku, "A New Low-Noise I-Squared Buck Converter Suitable for Wireless Sensor Networks With Dual-Current-Acceleration Techniques," IEEE Access, vol. 11, pp. 41644-41653, 2023, doi: 10.1109/ACCESS.2023.3269420.
[11]M.-B. Lin, Introduction to VLSI systems: a logic, circuit, and system perspective. CRC press, 2011.
[12]陳育煌, "採用堆疊開關功率級之數位降壓晶片設計," 碩士, 電機工程學系, 國立成功大學, 台南市, 2016.
[13]X. Ming, Y.-L. Xin, T.-S. Li, H. Liang, Z.-J. Li, and B. Zhang, "A constant on-time control with internal active ripple compensation strategy for buck converter with ceramic capacitors," IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 9263-9278, 2018.
[14]K. N. Leung and P. K. Mok, "A sub-1-V 15-ppm//spl deg/C CMOS bandgap voltage reference without requiring low threshold voltage device," IEEE Journal of Solid-State Circuits, vol. 37, no. 4, pp. 526-530, 2002.
[15]B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill Education, 2000.
[16]R. C. H. Chang, W. C. Chen, and J. K. S. Huang, "A 93.4% Efficiency 8-mV Offset Voltage Constant On-Time Buck Converter With an Offset Cancellation Technique," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 2069-2073, 2020, doi: 10.1109/TCSII.2019.2948208.
[17]B. Yuan, M. X. Liu, W. T. Ng, and X. Q. Lai, "A Fast-Response RBAOT-Controlled Buck Converter With Pseudofixed Switching Frequency and Enhanced Output Accuracy," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 79-88, 2021, doi: 10.1109/JESTPE.2019.2956834.
[18]Q. u. Ain et al., "A High-Efficiency Fast Transient COT Control DC–DC Buck Converter With Current Reused Current Sensor," IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9521-9535, 2021, doi: 10.1109/TPEL.2021.3052198.
[19]P. J. Liu, W. Y. Cheng, L. H. Chien, and J. Y. Lin, "A Fast Transient Current-Mode Buck Converter With Linear Regulation Mode," IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 3513-3522, 2023, doi: 10.1109/TPEL.2022.3223680.


電子全文 電子全文(網際網路公開日期:20280811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊