跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/23 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝佩芸
研究生(外文):XIE, PEI-YUN
論文名稱:基於藍牙訊號之被動式雷達手勢感測
論文名稱(外文):Passive Radar-Based Gesture Sensing using Bluetooth
指導教授:曾柏軒
指導教授(外文):TSENG, PO-HSUAN
口試委員:曾柏軒陳維昌許裕彬
口試委員(外文):TSENG, PO-HSUANCHEN, WEI-CHANGHSU, YU-PIN
口試日期:2023-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:43
中文關鍵詞:藍牙訊號跳頻手勢辨識被動式雷達
外文關鍵詞:BluetoothFrequency hoppingGesture SensingPassive radar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
第二章 相關工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 雷達工作原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 藍牙訊號 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 使用深度學習的手勢辨識方法 . . . . . . . . . . . . . . . . . . . . . . 9
第三章 研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 手勢辨識系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 資料前處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 動態時間校正 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 深度學習模型 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 MATLAB 模擬雷達架構 . . . . . . . . . . . . . . . . . . . . . . . . 19
第四章 實驗與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 實驗設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 手勢設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 資料收集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 不同前處理之機器學習結果比較 . . . . . . . . . . . . . . . . . . . 31
4.2.2 不同前處理之深度學習結果之比較 . . . . . . . . . . . . . . . . . . 33
4.2.3 MATLAB 模擬結果分析 . . . . . . . . . . . . . . . . . . . . . . 35
4.2.4 即時手勢辨識 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
第五章 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
[1] C.-C. Hsieh, D.-H. Liou, and D. Lee, “A real time hand gesture recognition system using motion history image,” in 2010 2nd International Conference on Signal Processing Systems, vol. 2, 2010, pp. V2–394–V2–398.
[2] N. Normani, A. Urru, L. Abraham, M. Walsh, S. Tedesco, A. Cenedese, G. A. Susto, and B. O’Flynn, “A machine learning approach for gesture recognition with a lensless smart sensor system,” in 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2018, pp. 136–139.
[3] P. Molchanov, S. Gupta, K. Kim, and K. Pulli, “Multi-sensor system for driver’s hand-gesture recognition,” in 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, 2015, pp. 1–8.
[4] M. I. Skolnik, “36 - radar,” in Reference Data for Engineers (Ninth Edition), ninth edition ed., W. M. Middleton and M. E. Van Valkenburg, Eds. Woburn: Newnes, 2002, pp. 36–1–36–22. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780750672917500388
[5] 周傳期, “利用 wifi 訊號偵測手勢及深度學習辨識研究,” in國立中山大學電機工程學系碩
士論文, 2018.
[6] B. Tan, K. Woodbridge, and K. Chetty, “A real-time high resolution passive wifi doppler-radar and its applications,” in 2014 International Radar Conference, 2014, pp. 1–6.
[7] M.-C. Tang, F.-K. Wang, and T.-S. Horng, “Human gesture sensor using ambient wireless signals based on passive radar technology,” in 2015 IEEE MTT-S International Microwave Symposium, 2015, pp. 1–4.
[8] 黃品瑜, “基於 wi-fi 都卜勒感測技術之即時手語辨識系統,” in國立中山大學電機工程學系
碩士論文, 2020.
[9] K. Ishak, N. Appenrodt, J. Dickmann, and C. Waldschmidt, “Advanced radar micro-doppler simulation environment for human motion applications,” in 2019 IEEE Radar Conference (RadarConf), 2019, pp. 1–6.
[10] S. Vishwakarma, W. Li, C. Tang, K. Woodbridge, R. Adve, and K. Chetty, “Simhumalator: An open-source end-to-end radar simulator for human activity recognition,” vol. 37, no. 3, pp. 6–22, Mar. 2022.
[11] A. F. F, Xu M, “Static hand gesture recognition using capacitive sensing and machine learning.” in Sensors (Basel)., 2023.
[12] S. Ahmed, K. D. Kallu, S. Ahmed, and S. H. Cho, “Hand gestures recognition using radar sensors for human-computer-interaction: A review,” Remote Sensing, vol. 13, no. 3,2021. [Online]. Available: https://www.mdpi.com/2072-292/13/3/527
[13] M. Rangaswamy, “An overview of space-time adaptive processing for radar,” in 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695), 2003, pp. 45–50.
[14] M. Ummenhofer, J. Schell, J. Heckenbach, H. Kuschel, and D. W. D’O Hagan, “Doppler estimation for dvb-t based passive radar systems on moving maritime platforms,” in 2015 IEEE Radar Conference (RadarCon), 2015, pp. 1687–1691.
[15] J. A. CADZOW, “Chapter 9 - spectral analysis,” in Handbook of Digital Signal Processing, D. F. Elliott, Ed. San Diego: Academic Press, 1987, pp. 701–740. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B978008050780450014X
[16] S. Cao, X. Chen, and B. Yuan, “Overview of short-range wireless communication protocol,” in 2022 7th International Conference on Computer and Communication Systems (ICCCS), 2022, pp. 519–523.
[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[18] X. Cheng, G. Li, R. Skulstad, H. Zhang, and S. Chen, “Spectralseanet: Spectrogram and convolutional network-based sea state estimation,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 2020, pp. 5069–5074.
[19] D. Yudin, A. Sotnikov, and A. Krishtopik, “Detection of big animals on images with road
scenes using deep learning,” in 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI), 2019, pp. 100–1003.
[20] J. Long, W. Sun, Z. Yang, and O. I. Raymond, “Asymmetric residual neural network for accurate human activity recognition,” Information, vol. 10, no. 6, 2019. [Online]. Available: https://www.mdpi.com/2078-2489/10/6/203
[21] S. S. Jambhale and A. Khaparde, “Gesture recognition using dtw piecewise dtw,” in 2014 International Conference on Electronics and Communication Systems (ICECS), 2014, pp.1–5.
[22] H. Li, J. Wan, S. Liu, H. Sheng, and M. Xu, “Wetland vegetation classification through multi-dimensional feature time series remote sensing images using mahalanobis distance-based dynamic time warping,” Remote Sensing, vol. 14, no. 3, 2022. [Online]. Available: https://www.mdpi.com/2072-4292/14/3/501
[23] S. C. Sajjan and C. Vijaya, “Comparison of dtw and hmm for isolated word recognition,” in International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012), 2012, pp. 466–470.
[24] C. Li and J. Lin, “Random body movement cancellation in doppler radar vital sign de-tection,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3143–3152, 2008.
[25] A. Szabo, “Clutter simulation for airborne pulse-doppler radar,” in 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695), 2003, pp. 608–613.
[26] J. Schmidhuber, “Deep learning in neural networks: An overview,” CoRR, vol. abs/1404.7828, 2014. [Online]. Available: http://arxiv.org/abs/1404.782845
電子全文 電子全文(網際網路公開日期:20270901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top