跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林雯婕
研究生(外文):LIN, WEN-JIE
論文名稱:基於單端相量量測之雙端帶有一終端負載輸電線路故障定位技術研究
論文名稱(外文):Study of A Fault Location Technique for Two-Terminal Transmission Lines with One-End Loads Based on Single-Terminal Phasor Measurements
指導教授:林子喬林子喬引用關係
指導教授(外文):LIN, TZU-CHIAO
口試委員:曾國雄張朝陽蘇恆毅林子喬
口試委員(外文):TSENG, KUO-HSIUNGCHANG, CHAUR-YANGSU, HENG-YILIN, TZU-CHIAO
口試日期:2023-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:130
中文關鍵詞:故障定位終端負載雙端輸電線路阻抗法修正型割線法汽電共生裝置阻抗角
外文關鍵詞:Fault LocationOne-End LoadsTwo-Terminal Transmission LinesImpedance MethodModified Secant MethodCogeneration DeviceImpedance Angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 背景與動機 1
1.2 文獻回顧 2
1.3 研究貢獻 5
1.4 論文架構 6
第二章 雙端帶有一終端負載故障定位演算法 8
2.1輸電線模型 8
2.1.1 中程輸電線模型 8
2.1.2 長程輸電線模型 10
2.2 修正型割線疊代法 13
2.3 故障定位指標用於雙端單一線徑帶有一端負載輸電線路 14
2.3.1故障類型一:單線接地故障 16
2.3.2故障類型二:雙線接地故障 24
2.3.3故障類型三:雙線短路故障 30
2.3.4故障類型四:三相平衡故障 35
2.4 比流器飽和影響測試 40
2.5 耦合電容式比壓器暫態影響測試 42
第三章 汽電共生設備運轉狀態識別技術 44
3.1 阻抗角 44
3.2 雙端單一線徑帶有一端汽電共生設備之運轉狀態分析 45
3.3 三端單一線徑帶有一端汽電共生設備之運轉狀態判別 48
3.4 三端多區段複合線徑帶有一端汽電共生設備之運轉狀態判別 51
第四章 演算法性能評估 55
4.1 雙端單一線徑帶有一端負載輸電線路模擬測試與分析 55
4.1.1雙端單一線徑帶有一端負載輸電線路:負載為重載 56
4.1.2雙端單一線徑帶有一端負載輸電線路:負載為中載 62
4.1.3雙端單一線徑帶有一端負載輸電線路:負載為輕載 67
4.1.4雙端單一線徑帶有一端負載輸電線路性能測試-考慮CT 73
4.1.5雙端單一線徑帶有一端負載輸電線路性能測試-考慮CCVT 77
4.1.6雙端單一線徑帶有一端負載輸電線路性能測試-考慮CT及CCVT 82
4.2 汽電共生設備運轉狀態判別之性能測試 87
4.2.1 雙端單一線徑帶有一端汽電共生設備之運轉狀態性能測試 87
4.2.2 三端單一線徑帶有一端汽電共生設備之運轉狀態性能測試 93
4.2.3 三端多區段複合線徑帶有一端汽電共生設備之運轉狀態性能測試 99
4.3 帶有多個終端負載之實際線路故障案例分析 105
4.3.1 單一終端負載輸電線路演算法延伸至多終端負載時之方法 105
4.3.2 實際故障案例分析 112
第五章 現有技術之比較分析 117
5.1 文獻[15]提出方法之簡述 117
5.2 與文獻[15]之實際案例比較 119
5.2.1實際案例三 119
5.2.2實際案例四 120
5.2.3實際案例五 122
5.3 現有技術之比較小節 123
第六章 結論與未來研究方向 125
6.1 結論 125
6.2 未來研究方向 126
參考文獻 127
[1]M. Farshad and J. Sadeh, “Accurate Single-Phase Fault-Location Method for Transmission Lines Based on K-Nearest Neighbor Algorithm Using One-End Voltage,” IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 2360-2367, Oct. 2012.
[2]G. Mou-Fa, G. Jian-Hong, S. Xiang, and C. Duan-Yu, “Location of Single-Line-to-Ground Fault Using 1-D Convolutional Neural Network and Waveform Concatenation in Resonant Grounding Distribution Systems,” IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021.
[3]M. Paul and S. Debnath, “Fault Detection and Classification Scheme for Transmission Lines Connecting Windfarm Using Single End Impedance,” IETE Journal of Research, Feb. 2021.
[4]S. I. Ahmed, M. F. Rahman, S. Kundu, R. M. Chowdhury, A. O. Hussain, and M. Ferdoushi, “Deep Neural Network Based Fault Classification and Location Detection in Power Transmission Line,” 2022 12th International Conference on Electrical and Computer Engineering (ICECE), pp. 252-255, 2022.
[5]G. Morales-España, J. Mora-Flórez, and G. Carrillo-Caicedo, “A Complete Fault Location Formulation for Distribution Systems Using The K-Nearest Neighbors for Regression and Classification,” 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), pp. 810-815, 2010.
[6]A. Elnozahy, K. Sayed, and M. Bahyeldin, “Artificial Neural Network Based Fault Classification and Location for Transmission Lines,” 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), pp. 140-144, 2019.
[7]O. D. Naidu and A. K. Pradhan, “Precise Traveling Wave-Based Transmission Line Fault Location Method Using Single-Ended Data,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5197-5207, Aug. 2021.
[8]A. Guzmán, B. Kasztenny, Y. Tong, and M. V. Mynam, “Accurate and Economical Traveling-Wave Fault Locating Without Communications,” 2018 71st Annual Conference for Protective Relay Engineers (CPRE), pp. 1-18, 2018.
[9]R. Liang, N. Peng, L. Zhou, X.Z. Meng, Y. Hu, Y.C. Shen, and X. Xue, “Fault Location Method in Power Network by Applying Accurate Information of Arrival Time Differences of Modal Traveling Waves,” IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3124-3132, May 2020.
[10]H. Shu, X. Liu, and X. Tian, “Single-Ended Fault Location for Hybrid Feeders Based on Characteristic Distribution of Traveling Wave Along a Line,” IEEE Transactions on Power Delivery, vol. 36, no. 1, pp. 339-350, Feb. 2021.
[11]J. Liang, F. Yang, F. Yong, and M. Yang, “A New Single Ended Fault Location Method for Transmission Line Based on Positive Sequence Superimposed Network During Auto-Reclosing,” IEEE Transactions on Power Delivery, vol. 34, no. 3, Jun. 2019.
[12]F.M. Aboshady, D.W.P. Thomas, and Mark Sumner, “A New Single End Wideband Impedance Based Fault Location Scheme for Distribution Systems,” Electric Power Systems Research, vol. 173, pp.263-270, Aug. 2019.
[13]S. Das, S. Santoso, A. Gaikwad, and M. Patel, “Impedance-Based Fault Location in Transmission Networks: Theory and Application,” IEEE Access, vol. 2, pp. 537-557, 2014.
[14]R. Krishnathevar and E. E. Ngu, “Generalized Impedance-Based Fault Location for Distribution Systems,” IEEE Transactions on Power Delivery, vol. 27, no. 1, pp. 449-451, Jan. 2012
[15]G. Morales-Espana, J. Mora-Florez, and H. Vargas-Torres, “Elimination of Multiple Estimation for Fault Location in Radial Power Systems by Using Fundamental Single-End Measurements,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1382-1389, Jul. 2009.
[16]Q. Zheng, Z. Xinyi ,and B. Matloob, “Fault Location Method Of Single-phase To Earth Fault In Distribution Network Based On The Variance Of Three-phase Asymmetrical Current Fault Component,” 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), pp. 305-311 ,2020.
[17]T. Takagi and Y . Yamakoshi, “Development of A New Type Fault Locator Using The One-Terminal Voltage and Current Data”, IEEE Transactions on Power Apparatus and Systems, vol. PAS-101, no. 8 Aug. 1982.
[18]H. Saadat, Power System Analysis. New York: McGraw-Hill, 1999.
[19]S. Chapra and R. Canale, Numerical Methods for Engineers (5th ed.). New York: McGraw-Hill, 2005.
[20]J. Wijekoon, A. D. Rajapakse ,and N. M. Haleem, “Fast and Reliable Method for Identifying Fault Type and Faulted Phases Using Band Limited Transient Currents,” IEEE Transactions on Power Delivery, vol. 36, no. 5, pp. 2839-2850, Oct. 2021.
[21]D. Zheng, Y. Wang and W. Mo, “Fault Identification Method of MMC-HVDC Based on GRU Neural Network,” 2021 Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2021), pp. 306-311, 2021.
[22]T. C. Lin and Z. J. Ye, “A Signal-Superimposed Technique for Fault Location in Transmission Lines Through IED Measurements Considering Communication Service Failure,” IEEE Systems Journal, vol. 15, no. 3, pp. 4525-4536, Sep. 2021.
[23]L. J. Powell, “Current Transformer Burden and Saturation,” IEEE Transactions on Industry Applications, vol. IA-15, no. 3, pp. 294-303, May 1979.
[24]C. S. Yu, “Detection and Correction of Saturated Current Transformer Measurements using Decaying DC Components,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1340-1347. Jul. 2010.
[25]R. Ahamed, A. Rao, and V. Mari, “Saturation Analysis of Current Rransformer,” International Journal on Research and Review, Vol. 2, pp. 337-342, Jun. 2015.
[26]R. L. de Andrade Reis, W. L. A. Neves, F. V. Lopes and D. Fernandes, “Coupling Capacitor Voltage Transformers Models and Impacts on Electric Power Systems: A Review,” IEEE Transactions on Power Delivery, vol. 34, no. 5, pp. 1874-1884, Oct. 2019.
[27]D. Hou and J. Roberts, “Capacitive Voltage Transformer: Transient Overreach Concerns and Solutions for Distance relaying”, Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 119-125, 1996.
[28]D. A. C. Lima, R. G. Ferraz, A. D. Filomena ,and A. S. Bretas, “Electrical Power Systems Fault Location with One-Terminal Data Using Estimated Remote Source Impedance,” 2013 IEEE Power & Energy Society General Meeting, pp. 1-5, 2013.
[29]H. Panahi, M. Sanaye-Pasand ,and M. Davarpanah, “Three-Terminal Lines Fault Location Using Two Main Terminals Data in the Presence of Renewable Energy Sources,” IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 2085-2095, May 2023.
[30]345台電kV、161 kV、69 kV全台輸電線路系統單線圖,台灣電力股份有限公司
[31]劉智豪,基於同步相量量測之三端環型結構輸電網路故障定位演算法研究,碩士論文,國立臺北科技大學電機工程系碩士班,臺北,2019

電子全文 電子全文(網際網路公開日期:20280822)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top