跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉育瑋
研究生(外文):YEH, YU-WEI
論文名稱:偵測軌道車輛前方可行駛空間之研究
論文名稱(外文):Study of Detecting the Drivable Space in Front of the Rail Transportation
指導教授:許志明許志明引用關係
指導教授(外文):HSU, CHIH-MING
口試委員:許志明李明哲周仁祥
口試委員(外文):HSU, CHIH-MINGLEE, MING-CHECHOU, JEN-HSIANG
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:74
中文關鍵詞:可行駛空間障礙物偵測重定位同時定位與建圖
外文關鍵詞:Drivable spaceObstacle detectionRelocalizationSLAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文貢獻 3
1.4 論文架構 4
第二章 文獻探討 5
2.1 軌道偵測方法 5
2.1.1 傳統特徵檢測 5
2.1.2 深度學習 6
2.2 光達同時定位與地圖構建 7
2.3 光達重定位 8
2.3.1 配對方法 9
2.3.2 特徵方法 10
2.4 總結 12
第三章 研究方法 13
3.1 離線資料庫 13
3.1.1 同時定位與建圖系統 13
3.1.2 離線可行駛空間 14
3.2 線上檢測可行駛空間 17
3.2.1 重定位系統 17
3.2.2 當前定位點與最近點的估測 18
3.2.3 補償系統 20
3.2.4 未來行駛軌跡 21
3.2.5 局部可行駛空間、線上可行駛空間 22
3.2.6 檢測點雲 23
3.3 總結 24
第四章 實驗結果 25
4.1 實驗設備 26
4.2 實驗流程 28
4.3 離線建立資料庫 30
4.3.1 LIO-SAM地圖與軌跡 30
4.3.2 離線可行駛空間 33
4.4 線上檢測可行駛空間 37
4.4.1 hdl-localization重定位與軌跡 37
4.4.2 參考最近點的位姿 41
4.4.3 未來行駛軌跡的生成 49
4.4.4 局部可行駛空間、補償優化線上可行駛空間 51
4.5 檢測結果 58
4.5.1 障礙物的設置 58
4.5.2 檢測結果 62
4.6 運算時間 68
4.7 總結 68
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 69
參考文獻 70


[1] 台灣高鐵。災害預防。上網日期:2023年8月15日。檢自:https://www.thsrc.com.tw/ArticleContent/c690cfa7-597a-4f27-917e-00ca68de01e7
[2] 至鴻科技。平交道障礙物自動偵測系統。上網日期:2023年8月15日。檢自:https://www.harbinger.com.tw/Page/Product/ProductList.aspx?ProductCategoryNo=115
[3] 劉建邦(2023)。防台中捷運意外 北捷:授權站務員4方式讓列車停止。上網日期:2023年8月15日。檢自:https://www.cna.com.tw/news/aloc/202305110247.aspx.
[4] 高雄捷運(2023)。高雄捷運營運安全措施說明。上網日期:2023年8月15日。檢自:https://www.krtc.com.tw/Information/news_more?id=a1e62008f2ba41828481b5fa9d7797e5
[5] 余曉涵(2023)。台中捷運事故 運安會建議擬定異物入侵預警及應變措施。上網日期:2023年8月15日。檢自:https://www.cna.com.tw/news/ahel/202305300370.aspx.
[6] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly-coupled LiDAR inertial odometry via smoothing and mapping,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 5135–5142.
[7] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional lidar-based system for long-term and wide-area people behavior measurement,” International Journal of Advanced Robotic Systems, 2019, vol. 16, no. 2, doi: 1729881419841532.
[8] W. Zhangyu, Y. Guizhen, W. Xinkai, L. Haoran and L. Da, “A Camera and LiDAR Data Fusion Method for Railway Object Detection,” in IEEE Sensors Journal, vol. 21, no. 12, pp. 13442-13454, June, 2021, doi: 10.1109/JSEN.2021.3066714.
[9] Yu, Xinyi et al, “Real-time rail recognition based on 3D point clouds,” Measurement Science and Technology 33, 2022.
[10] LI, Xinpeng, PENG, Xiaojiang, “Rail Detection: An Efficient Row-based Network and a New Benchmark,” In Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 6455-6463.
[11] A. R. Khairuddin, M. S. Talib and H. Haron, “Review on simultaneous localization and mapping (SLAM),” 2015 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 2015, pp. 85-90, doi: 10.1109/ICCSCE.2015.7482163.
[12] L. Huang, “Review on LiDAR-based SLAM Techniques,” 2021 International Conference on Signal Processing and Machine Learning, Stanford, CA, USA, 2021, pp. 163-168, doi: 10.1109/CONF-SPML54095.2021.00040.
[13] J. K. Makhubela, T. Zuva and O. Y. Agunbiade, “A Review on Vision Simultaneous Localization and Mapping (VSLAM),” 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), Mon Tresor, Mauritius, 2018, pp. 1-5, doi: 10.1109/ICONIC.2018.8601227.
[14] Zhang, Ji, and Sanjiv Singh, “LOAM: Lidar odometry and mapping in real-time,” Robotics: Science and systems, Vol. 2, No. 9, 2014.
[15] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 4758-4765, doi: 10.1109/IROS.2018.8594299.
[16] X. Huo, L. Dou, H. Lu, B. Tian and M. Du, “A Line/Plane Feature-based Lidar Inertial Odometry and Mapping,” 2019 Chinese Control Conference (CCC), Guangzhou, China, 2019, pp. 4377-4382, doi: 10.23919/ChiCC.2019.8866215.
[17] H. Ye, Y. Chen and M. Liu, “Tightly Coupled 3D Lidar Inertial Odometry and Mapping,” 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 3144-3150, doi: 10.1109/ICRA.2019.8793511.
[18] M. Elhousni and X. Huang, “A Survey on 3D LiDAR Localization for Autonomous Vehicles,” 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 2020, pp. 1879-1884, doi: 10.1109/IV47402.2020.9304812.
[19] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” Proceedings Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 2001, pp. 145-152, doi: 10.1109/IM.2001.924423.
[20] A. Censi, “An ICP variant using a point-to-line metric,” 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008, pp. 19-25, doi: 10.1109/ROBOT.2008.4543181.
[21] Low, Kok-Lim, “Linear least-squares optimization for point-to-plane icp surface registration,” Chapel Hill, University of North Carolina, 2004.
[22] Segal, Aleksandr, Dirk Haehnel, and Sebastian Thrun, “Generalized-icp,” Robotics: science and systems, Vol. 2, No. 4, 2009.
[23] M. Magnusson, “The three-dimensional normal-distributions transform: An efficient representation for registration, surface analysis, and loop detection,” Ph.D. dissertation, Sch. Sci. Technol., Örebro Universitet, ÖrÖebro, Sweden, 2009.
[24] Magnusson, Martin, Achim Lilienthal, and Tom Duckett, “Scan registration for autonomous mining vehicles using 3D‐NDT,” Journal of Field Robotics, vol. 24, no. 10 , 2007, pp.803-827.
[25] P. Biber and W. Strasser, “The normal distributions transform: a new approach to laser scan matching,” Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 2003, pp. 2743-2748 vol.3, doi: 10.1109/IROS.2003.1249285.
[26] R. Milijas, L. Markovic, A. Ivanovic, F. Petric and S. Bogdan, “A Comparison of LiDAR-based SLAM Systems for Control of Unmanned Aerial Vehicles,” 2021 International Conference on Unmanned Aircraft Systems, Athens, Greece, 2021, pp. 1148-1154, doi: 10.1109/ICUAS51884.2021.9476802.
[27] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” in IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, Oct. 2015, doi: 10.1109/TRO.2015.2463671.
[28] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,” in IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, Oct. 2017, doi: 10.1109/TRO.2017.2705103.
[29] W. S. Grant, R. C. Voorhies and L. Itti, “Finding planes in LiDAR point clouds for real-time registration,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 4347-4354, doi: 10.1109/IROS.2013.6696980.
[30] M. Velas, M. Spanel and A. Herout, “Collar Line Segments for fast odometry estimation from Velodyne point clouds,” 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 2016, pp. 4486-4495, doi: 10.1109/ICRA.2016.7487648.
[31] H. Wang, C. Wang and L. Xie, “Lightweight 3-D Localization and Mapping for Solid-State LiDAR,” in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1801-1807, April, 2021, doi: 10.1109/LRA.2021.3060392.
[32] “Point Cloud Library,” https://pointclouds.org/.
[33] “RViz,” http://wiki.ros.org/rviz.
[34] “RS-LiDAR-M1,” https://www.robosense.ai/en/RS-LiDAR-M1.
[35] “LORD-Microstrain 3DM-GX5-25,” https://www.mouser.tw/ProductDetail/LORD-Microstrain/3DM-GX5-25.

電子全文 電子全文(網際網路公開日期:20290122)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top