跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 08:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏承弘
研究生(外文):WEI, CHENG-HUNG
論文名稱:線性移動台之體積誤差建模與量測
論文名稱(外文):Volumetric Error Modeling and Measurement of Linear Stages
指導教授:何昭慶何昭慶引用關係
指導教授(外文):HO, CHAO-CHING
口試委員:范光照陳亮嘉李朱育何昭慶
口試委員(外文):FAN, KUANG-CHAOCHEN, LIANG-CHIALEE, JU-YIHO, CHAO-CHING
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:73
中文關鍵詞:五自由度測量系統阿貝原則布萊恩原則體積誤差
外文關鍵詞:5 DOF measuring systemAbbé principleBryan principleVolumetric error
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
任一運動軸由於元件製造與組裝誤差,都存在六種自由度的幾何誤差。傳統對精密機器的幾何誤差測量方法都是逐項一一量測,不僅費時費力,價格也昂貴。本論文自行開發五自由度測量系統,結合了四自由度幾何誤差測量系統與LDDI雷射都卜勒位移器,並藉由精心設計過的光學組件相互搭配,實現同時對測量目標的五個自由度幾何誤差進行量測,包含了定位誤差、水平與垂直兩個方向的直線度誤差以及偏擺和俯仰兩個角度誤差,且只使用穩頻氦氖雷射管作為單光束雷射源。
本五自由度誤差量測系統具有結構簡單容易安裝、成本低以及高精度等優點,也因使用60 MHz的調頻光,具有高速度的特性,且可以進行長距離的實時測量,其直線度誤差測量精度為±1 μm、角度誤差測量精度為±1 arc-sec,定位誤差測量精度為2 ppm。而在光軸與移動軸的校準上,透過可調式的折射鏡可快速地進行雷射光軸的對齊校準。
本論文並基於阿貝原則與布萊恩原則推導體積誤差公式,用五自由度誤差量測系統對AOI機台進行測量,再透過公式計算可得知機台的定位誤差。

This article introduces a self-developed five-degree-of-freedom measurement system for geometric errors in precision machinery components. Traditional methods of measuring geometric errors in precision machinery involve time-consuming and expensive individual measurements of each error component. This article introduces a system that combines a four-degree-of-freedom geometric error measurement system with an LDDI (Laser Doppler Differential Instrument) laser displacement sensor. Through carefully designed optical components, this system can simultaneously measure five degrees of freedom of geometric errors in the measurement target. These include positioning errors, linear straightness errors in horizontal and vertical directions, as well as pitch and yaw angle errors. The system uses a stabilized frequency helium-neon laser as a single-beam laser source.
The five-degree-of-freedom error measurement system offers advantages such as simple structure, easy installation, low cost, and high precision. It operates at a high speed due to its use of a 60 MHz modulated light source and can perform real-time measurements over long distances. The precision of linear straightness error measurement is ±1 μm, angle error measurement is ±1 arc-sec, and positioning error measurement accuracy is 2 ppm. For alignment calibration between optical axis and moving axis, an adjustable reflecting mirror is used to quickly align the laser beam.
By deriving volume error formulas based on Abbe's and Brien's principles, the system measures an Automated Optical Inspection (AOI) machine and calculates its positioning error using the derived formulas.

摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 多自由度測量系統 3
1.2.2 體積誤差建模 10
1.3 研究內容與章節概要 11
第二章 四自由度幾何誤差測量系統 12
2.1 四自由度幾何誤差測量原理 12
2.1.1 四象限光電感測器工作原理 12
2.1.2 直線度誤差測量原理 13
2.1.3 俯仰角度與偏擺角度誤差測量原理 14
2.2 四自由度幾何誤差測量系統架構 16
2.2.1 雷射光纖模組 16
2.2.2 光學感測模組 17
2.3 四自由度幾何誤差測量系統光路原理 18
第三章 LDDI雷射都卜勒位移器 21
3.1 LDDI雷射都卜勒位移器原理 21
3.1.1 基於都卜勒效應之位移測量原理 21
3.1.2 He-Ne雷射穩頻原理 23
3.1.3 LDDI雷射都卜勒位移器工作原理 25
3.2 LDDI雷射都卜勒位移器系統結構 26
3.2.1 穩頻雷射模組 26
3.2.2 測量光學模組 29
3.3 LDDI雷射都卜勒位移器結構組裝 31
3.3.1 穩頻雷射模組結構組裝 31
3.3.2 測量光學模組結構組裝 33
第四章 五自由度幾何誤差測量系統 39
4.1 五自由度幾何誤差測量系統光路原理 39
4.2 五自由度幾何誤差測量系統結構設計 40
4.3 五自由度幾何誤差測量系統光軸校準 42
第五章 AOI機台體積誤差建模及測量 45
5.1 阿貝原則與布萊恩原則 45
5.2 體積誤差公式的組成 47
5.3 AOI機台多自由度測量及體積誤差 55
5.4 驗證測量實驗 64
第六章 結論與未來展望 69
6.1 結論 69
6.2 未來展望 70
參考文獻 71


[1]范光照、曾百由,「精密機械精度基礎」,高立圖書有限公司,台灣新北,2018年。
[2]E. Abbe, "Messapparate für physiker," Zeitschrift für Instrumentenkunde, 1890; 10: 446-448.
[3]J. B. Bryan, "The Abbe principle revisited: an updated interpretation," Precision Engineering, vol.1, no. 3, pp. 129-132, 1979.
[4]K.-C. Fan, M.-J. Chen, and W. Huang, "A six-degree-of-freedom measurement system for the motion accuracy of linear stages," International Journal of Machine Tools and Manufacture, vol. 38, no. 3, pp. 155-164, 1998.
[5]C. Lee, G. H. Kim, and S.-K. Lee, "Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage," Measurement Science and Technology, vol. 22, no. 10, p. 105901, 2011.
[6]K. C. Lau, Y.-Q. Liu, "Five-axis/six-axis laser measuring system, " in United States Patent, Patent Number 6049377, Apr. 11, 2000
[7]I. Rahneberg, H.-J. Büchner, and G. Jäger, "Optical system for the simultaneous measurement of two-dimensional straightness errors and the roll angle," in Optical Sensors 2009, 2009, vol. 7356: SPIE, pp. 198-206.
[8]王綜漢,「工具機阿貝誤差補償器的研究」,國立台灣大學,碩士論文,2011。
[9]B. L. Thomas, H. M. Bass, L. K. Loftus, R. J. Churchill, "Laser aligned five-axis position measurement device, " in United States Patent, Patent Number 5798828, Aug. 25, 1998.
[10]C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, "A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module," Sensors and actuators A: physical, vol. 125, no. 1, pp. 100-108, 2005.
[11] Y. Zhao, B. Zhang, and Q. Feng, "Measurement system and model for simultaneously measuring 6DOF geometric errors," Optics express, vol. 25, no. 18, pp. 20993-21007, 2017.
[12]Y.-T. Chen, W.-C. Lin, and C.-S. Liu, "Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage," Optics and Lasers in Engineering, vol. 92, pp. 94-104, 2017.
[13]C.-S. Liu, Y.-F. Pu, Y.-T. Chen, and Y.-T. Luo, "Design of a measurement system for simultaneously measuring six-degree-of-freedom geometric errors of a long linear stage," Sensors, vol. 18, no. 11, p. 3875, 2018.
[14]C.-H. Liu, W.-Y. Jywe, C.-C. Hsu, and T.-H. Hsu, "Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage," Review of scientific instruments, vol. 76, no. 5, 2005.
[15]Y. Huang, K.-C. Fan, W. Sun, and S. Liu, "Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error," Optics Express, vol. 26, no. 13, pp. 17185-17198, 2018.
[16]J. Denavit and R. S. Hartenberg, "A kinematic notation for lower-pair mechanisms based on matrices," 1955.
[17]P. Ferreira, C. Liu, and E. Merchant, "A contribution to the analysis and compensation of the geometric error of a machining center," CIRP Annals, vol. 35, no. 1, pp. 259-262, 1986.
[18]C. Wang, "Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part I: Basic theory," Review of scientific instruments, vol. 71, no. 10, pp. 3933-3937, 2000.
[19]C. P. Wang, R. P. Verdes, S. B. Zhou, "Interferometer requiring no critical component alignment, " in United States Patent, Patent Number 5116126, May 26, 1992.
[20]Y. Zhao, "Implementing thermal feedback control of a helium-neon laser for frequency stabilization," MS thesis, Ward Melville High School, East Setauket, NY, 2008.
[21]R. Balhorn, H. Kunzmann, and F. Lebowsky, "Frequency stabilization of internal-mirror helium–neon lasers," Applied optics, vol. 11, no. 4, pp. 742-744, 1972.
[22]黃俊凱,「嵌入式溫度控制於氦氖雷射穩頻之研究」,國立臺北科技大學,碩士論文,2021。
[23]B. ISO, "Test Code for Machine Tools–Part 1: Geometric Accuracy of Machines Operating Under No-Load or Quasi-Static Conditions," ISO230, vol. 1, 2012.

電子全文 電子全文(網際網路公開日期:20280822)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top