跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李彥霖
研究生(外文):LI,YAN-LIN
論文名稱:混燒飛灰以研磨法安定化與其利用於混凝土對工程性質之影響
論文名稱(外文):Effects of Co-Fired Fly Ash Stabilization with Grinding Method on the Engineering Properties of Concrete
指導教授:黃中和黃中和引用關係
指導教授(外文):HUANG, CHUNG-HO
口試委員:黃中和顏聰許貫中湯兆緯
口試委員(外文):HUANG, CHUNG-HOYAN, CONGXU, GUAN-ZHONGTANG, CHAO-WEI
口試日期:2023-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:116
中文關鍵詞:混燒飛灰再利用工作性耐久性
外文關鍵詞:Co-fired Fly AshReuseWorkabilityDurability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
混燒飛灰係鍋爐燃燒混合燃料集塵系統收集之廢棄物,不同於一般燃煤飛灰,添加於水泥系材料會使體積產生膨脹問題。本研究針對混燒飛灰採用鋼球研磨法使其安定化後,以替代水泥方式摻用於混凝土,探究其對混凝土性質之影響。收集之混燒飛灰先經鋼球研磨,使其比表面積具有三個等級(3000 cm2/g(未研磨)、4000 cm2/g,及5000 cm2/g);並將混燒飛灰混合燃煤飛灰配成三種飛灰,包含燃煤飛灰組(0%混燒飛灰純燃煤飛灰)、混合灰組(混燒飛灰與燃煤飛灰各50%),及混燒飛灰組(100%混燒飛灰)。各種飛灰添加於三種水膠比(0.30、0.45、0.60)之飛灰混凝土中,飛灰取代水泥重量百分率設定有0%(控制組)、5%、10%、20%、30%。試驗上,首先檢測混燒飛灰研磨前後之基本性質。其後將各類飛灰摻入混凝土拌和,每間隔15分鐘進行試體安定性檢測,以測得飛灰安定反應時間,評估混燒飛灰研磨安定化成效。同時,進行混燒飛灰混凝土新拌性質試驗。待安定化後拌製混凝土試體進行硬固性質試驗,包含抗壓強度、抗彎強度、透水等試驗。透過試驗數據比較,瞭解安定化混燒飛灰對混凝土工程性質之影響。
試驗結果顯示,未研磨處理之混燒飛灰,其表面積為2977.7 cm2/g。經過30000轉之研磨處理後,比表面積增加為5016.1 cm2/g,約增加66 %。研磨後,混燒飛灰比重從2.06上升至2.16,上升幅度為4.9 %。隨著比表面積2977.7 cm2/g上升至5016.1 cm2/g,混燒飛灰取代水泥10 %、20 %、30 %,其反應時間分別由60 min、75 min及105 min下降至30 min、45 min及75 min,約減少28.6 %~50 %。顯示研磨可以加速混燒飛灰反應,使混燒飛灰達到安定化效果。添加20 %未安定及安定化混燒飛灰於混凝土中,其28天抗壓強度由136.5 kgf/cm2提升至287.3 kgf/cm2,約上升1.1倍;28天抗彎強度則由19.5 kgf/cm2提升至41.0 kgf/cm2,約能提高1.1倍。表示將混燒飛灰安定化後,可以大幅度的提升混凝土力學性質。本文規劃兩種耐久性試驗,研究結果得出隨混燒飛灰取代比例上升,有助於快速氯離子抗滲透能力。透水試驗也顯示隨安定化混燒飛灰取代比例上升,混凝土透水量降低。


Co-fired fly ash is a waste product collected from the dust collection system of boilers burning mixed fuels. Unlike typical fly ash, adding it in cement-based materials will cause volume expansion problem. In this research, the co-fired fly ash was stabilized by steel ball grinding, and it was used to replace cement in concrete to explore its effect on the properties of concrete. The collected co-fired fly ash was subjected to steel ball milling to achieve three levels of specific surface area (3000 cm²/g (pre-milled), 4000 cm²/g, and 5000 cm²/g). And the co-fired fly ash and coal fly ash were mixed into three types of fly ash, including coal fly ash group (100 % coal fly ash), mixed fly ash group (50 % each of co-fired fly ash and coal fly ash), and co-fired fly ash group (100% co-fired fly ash). Various fly ash was added to fly ash concrete with three water binder ratio (0.30, 0.45, 0.60), and the weight percentage of fly ash replacing cement was set at 0% (control group), 5%, 10%, 20%, and 30%. In terms of test planning, the basic properties of the co-fired fly ash before and after grinding are analyzed firstly. Secondly, various types of fly ash were mixed into concrete, and the stability of the test body was tested every 15 minutes to measure the reaction time of fly ash stabilization and evaluate the stabilization effect of co-fired fly ash grinding. At the same time, perform tests on the fresh properties of co-fired fly ash concrete. After being stabilized, the concrete specimens are mixed for hardened propertie test, including compressive strength, flexural strength, water permeability and other tests. Through the test results and analysis, we can understand the effect of stabilized co-fired fly ash on the engineering properties of concrete.
The results show that specific surface area of co-fired fly ash is 2977.7 cm2/g. After grinding at 30,000 rpm, the specific surface area increased to 5016.1 cm2/g, an increase of about 66%. After grinding, the proportion of co-fired fly ash increased from 2.06 to 2.16, with an increase of 4.9%. As the specific surface area increased from 2977.7 cm2/g to 5016.1 cm2/g, the co-fired fly ash replaced cement by 10%, 20%, and 30%, and the reaction time decreased from 60 min, 75 min, and 105 min to 30 min, 45 min,and 75 min, respectively, about 28.6%~50% reduction. It is shown that grinding can accelerate the reaction of co-fired fly ash and stabilize the co-fired fly ash. Adding 20% unstabilized and stabilized co-fired fly ash to concrete, its 28-days compressive strength increased from 136.5 kgf/cm2 to 287.3 kgf/cm2, an increase of about 1.1 times; 28-day flexural strength increased from 19.5 kgf/cm2 Increase to 41.0 kgf/cm2, which can be increased by about 1.1 times. It means that after the co-fired fly ash is stabilized, the mechanical properties of concrete can be greatly improved. In this paper, two kinds of durability tests are planned, and the research results show that the increase of the replacement ratio of co-fired fly ash is conducive to the rapid chloride ion penetration resistance. The water permeability test also shows that the water permeability of concrete decreases with the increase of the substitution ratio of stabilized co-fired fly ash.

目 錄
摘 要 I
ABSTRACT II
致 謝 IV
目 錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 1
1.3 研究方法與流程 2
第二章 文獻回顧 4
2.1 飛灰介紹 4
2.1.1 燃煤飛灰相關案例介紹 4
2.1.2 混燒飛灰 5
2.1.3 固體再生燃料(SRF) 6
2.2 研磨方法與飛灰性質比較 7
2.2.1 研磨方法 7
2.2.2 研磨前後物理性質變化 11
2.2.3 研磨前後化學性質變化 16
2.3 燃煤飛灰應用於混凝土之研究 18
2.3.1 燃煤飛灰對混凝土工作性 18
2.3.2 燃煤飛灰對混凝土力學性質 19
2.3.3 燃煤飛灰對混凝土耐久性質 23
2.4 廢棄物應用於混凝土之研究 25
2.4.1 回收廢棄物種類及特性 25
2.4.2 廢棄物再利用規範 26
2.4.3 廢棄物混凝土之工程性質 27
第三章 試驗規劃 28
3.1 試驗材料 28
3.1.1 膠結材料 28
3.1.2 粗細粒料 30
3.1.3 強塑劑 32
3.2 試驗儀器 33
3.2.1 粒料基本性質試驗儀器 33
3.2.2 研磨安定試驗設備 37
3.2.3 新拌性質試驗 38
3.2.4 力學性質試驗 40
3.2.5 耐久性質試驗 41
3.3 試驗方法 43
3.3.1 材料基本性質試驗方法 43
3.3.2 研磨安定處理方法 44
3.3.3 混凝土新拌性質試驗方法 44
3.3.4 混凝土力學性質試驗方法 45
3.3.5 混凝土耐久性質試驗方法 46
3.4 試驗組別及編碼說明 48
3.4.1 混凝土拌和程序 48
3.4.2 混凝土配比設計與變數簡介 48
3.4.3 試驗組別編碼說明 50
第四章 試驗結果與討論 51
4.1 研磨混燒飛灰基本性質 51
4.1.1 比重 51
4.1.2 粒徑分析 53
4.1.3 比表面積 57
4.1.4 外觀觀察 58
4.1.5 混燒飛灰化學性質分析 61
4.2 混燒飛灰安定效果分析 63
4.2.1 反應時間分析 63
4.2.2 安定化混燒飛灰熱壓膨脹試驗結果與分析 65
4.2.3 安定化混燒飛灰膨脹體積變化 70
4.3 研磨安定化混燒飛灰應用於混凝土之工程性質 72
4.3.1 新拌性質 72
4.3.2 抗壓強度 82
4.3.3 抗彎強度 91
4.4 研磨安定化混燒飛灰應用於混凝土之耐久性質 100
4.4.1 取代率對混凝土透水率之影響 100
4.4.2 比表面積對混凝土透水性之影響 101
4.4.3 取代率對混凝土氯離子滲透之影響 102
4.4.4 比表面積對混凝土氯離子滲透之影響 104
4.5 安定化混燒飛灰微觀結構 105
4.5.1 掃描式電子顯微鏡(SEM)分析 105
4.5.2 能量射散X射線光譜(EDS)元素分析 108
第五章 結論與建議 111
5.1 結論 111
5.1.1 研磨安定化成效評估 111
5.1.2 安定化混燒飛灰之新拌性質 111
5.1.3 安定化混燒飛灰之力學性質 111
5.1.4 安定化混燒飛灰之耐久性質 112
5.1.5 安定化混燒飛灰混凝土微觀結構 112
5.2 建議 112
參考文獻 113


參考文獻
[1]Christopher R. Shearer,John L. Provis,Susan A. Bernal,Kimberly E. Kurtis (2016.10), “Alkali-activation potential of biomass-coal co-fired fly ash”Cement and Concrete Composites. Vol. 73,pp.62-74.
[2]Diane Kearney (2010.03), “EIA’s Outlook Through 2035,” Energy Information Administration U.S. Department of Energy, Washington, DC.
[3]王聖堯,「廢棄物衍生燃料灰碴對控制性低強度回填材料性能之影響」,國立臺北科技大學土木工程系,碩士論文,臺北,2020。(指導教授:黃中和)
[4]黃中和(2020.12),「混燒飛灰安定化與控制性低強度回填材料性質試驗計畫成果報告」,財團法人台灣綠色生產力基金會,臺北市,2020.12.20
[5]黃中和(2019.10),「混燒飛灰安定化與控制性低強度回填材料性質試驗計畫成果報告」,財團法人台灣綠色生產力基金會委託計畫。2019.10.25~2019.12.20
[6]黃中和、陳哲軒、李羿霆(2020.09),「紙廠鍋爐混燒灰碴對控制性低強度回填材料工程性質之影響」,中華民國第15屆結構工程及第5屆地震工程研討會,台南、台灣,2020年9月2日
[7]黃中和(2020.11),「混燒飛灰安定化與控制性低強度回填材料性質試驗計畫」,財團法人台灣綠色生產力基金會委託計畫,2020.11.02~2020.12.20。
[8]龔智禹,「混燒飛灰安定化技術與其在利用於控制性低強度回填材料之研究」,國立臺北科技大學土木工程系,碩士論文,臺北,2022。(指導教授:黃中和)
[9]徐佩璇,「混燒飛灰特性研究及再利用之可行性評估」國立中央大學土木工程系,碩士論文,桃園。2021。(指導教授:黃偉慶)
[10]楊士峰,「流體化床鍋爐燃煤飛灰與混燒飛灰卜作嵐特性比較之研究-以紡織污泥為例」國立中央大學土木工程系,碩士論文,桃園。2019。(指導教授:黃偉慶)
[11]吳明富,「含鋁金屬混燒飛灰膨脹特性研究暨預處理穩定化方法評估」國立中央大學土木工程系,博士論文,桃園。2022。(指導教授:黃偉慶)
[12]Xiaoru Fu,Qin Li,Jianping Zhai,Guanghong Sheng,Feihu Li (2008.03), “The physical–chemical characterization of mechanically-treated CFBC fly ash” Cement and Concrete Composites. Vol. 30,pp.220-226.
[13]Li-liKan,Ruo-xin Shi,Jin Zhu (2019.06), “Effect of fineness and calcium content of fly ash on the mechanical properties of Engineered Cementitious Composites (ECC)” Construction and Building Materials. Vol. 209,pp.476-484.
[14]J. Payá,J. Monzó,M.V. Borrachero,E. Peris-Mora(1995.10), “Mechanical treatment of fly ashes. Part I: Physico-chemical characterization of ground fly ashes” Cement and Concrete Research. Vol.27,pp.1861-1874.
[15]Mukherejee S., Mandal S. and Adhikari U.B. (2001.04), “Comparative study on physical and mechanical properties of high slump and zero lump high volume fly ash concrete (HVFAC)” Global NEST Journal. Vol.15,pp.578-584.
[16]P. Nath,P. Sarker (2011), “Effect of Fly Ash on the Durability Properties of High Strength Concrete”Procedia Engineering. Vol. 13,pp.1149-1156.
[17]Ashish Kumer Saha (2018.01), “Effect of class F fly ash on the durability properties of concrete” Sustainable Environment Research. Vol. 28,pp.25-31.
[18]2022台灣能源情勢回顧https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/open-energy/1767-2022-open-energy-review.html
[19]Tarmac(2019), "Aberdeen Harbour expansion Project"
[20]K. J. Collins, A. C. Jensen, A. P. M. Lockwood, and A. W. H. Turnpenny, "Evaluation of Stabilized Coal-Fired Power Station Waste for Artificial Reef Construction" Bulletin of Marine Science”, vol. 55, no. 2-3, pp. 1251-1262
[21]漁農自然護理署(2020),「在外牛尾海敷設人工魚礁」
[22]UKQAA. "GFA for the A259 Ramsgate Harbour approach road in Kent.
[23]台灣電力公司,副產物資源再利用https://www.taipower.com.tw
[24]經濟部事業廢棄物再利用管理辦法https://riw.tgpf.org.tw/
[25]徐敬添、張義和、簡維誼、蔡書雅「奈米微分散技術與材料應用」,奈米技術專刊, pp.140-148
[26]Ilhwan You,Doo-Yeol Yoo,Jeung-Hwan Doh,Goangseup Zi (2021.04), “Performance of glass-blended cement produced by intergrinding and separate grinding methods” Cement and Concrete Composites. Vol. 118
[27]Rabah Hamzaoui,Othmane Bouchenafa,Sofiane Guessasma,Nordine Leklou,Ahmed Bouaziz (2016.01), " The sequel of modified fly ashes using high energy ball milling on mechanical performance of substituted past cement" Materials & Design, vol. 90, no. 2-3, pp.29-37
[28]https://www.fishersci.at/shop/products/pm-400-model-planetary-ball-mill
[29]https://www.beyonddiscovery.org/powder-metallurgy/attrition-mills.html
[30]Y.C. Lee,C.P. Lin,S.B. Wen(2004.03), "The Properties of Y5V Barium Titanate Powder after Treatment by Stirred Ball Mill"中國鑛冶工程學會會刊,48卷1期,P75 - 83
[31]Hongfang Sun,Brian Hohl,Yizheng Cao,Carol Handwerker,Todd S. Rushing,Toney K. Cummins,Jason Weiss (2013.11), “Jet mill grinding of portland cement, limestone, and fly ash: Impact on particle size, hydration rate, and strength” Cement and Concrete Composites. Vol. 44,pp.41-49.
[32]Samayamutthirian Palaniandy,Nurdina Abd Kadir,Mariatti Jaafar (2009.06), “Value adding limestone to filler grade through an ultra-fine grinding process in jet mill for use in plastic industries” Minerals Engineering. Vol. 22,pp.695-703.
[33]Kraiwood Kiattikomol,Chai Jaturapitakkul,Smith Songpiriyakij,Seksun Chutubtim (2001.08), “A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials” Cement and Concrete Composites. Vol. 23,pp.335-343.
[34]N.Bouzoubaâ,M.H. Zhang,A. Bilodeau,V.M. Malhotra (1997.12), “The effect of grinding on the physical properties of fly ashes and a portland cement clinker” Cement and Concrete Research. Vol.27,pp.1861-1874.
[35]Rafat Siddique (2004.03), “Performance characteristics of high-volume Class F fly ash concrete” Cement and Concrete Research. Vol.34,pp.487-493.
[36]B.D. Ikotun,G.C. Fanourakis,S. Mishra Bhardwaj (2017.04), “The effect of fly ash, β-cyclodextrin and fly ash-β-cyclodextrin composites on concrete workability and strength” Cement and Concrete Composites. Vol.78,pp.1-12.
[37]Y.H.Mugahed Amran,Mariantonieta Gutierrez Soto,Rayed Alyousef,Mohamed El-Zeadani,Hisham Alabduljabbar,Vegard Aune (2020.06), “Performance investigation of high-proportion Saudi-fly-ash-based concrete” Results in Engineering. Vol.6.
[38]Ali Mardani-Aghabaglou,Kambiz Ramyar (2013.01), “Mechanical properties of high-volume fly ash roller compacted concrete designed by maximum density method”Construction and Building Materials. Vol.38,pp.356-694.
[39]Byoungsun Park,Young Cheol Choi (2022.07), “Effects of fineness and chemical activators on the hydration and physical properties of high-volume fly-ash cement pastes” Journal of Building Engineering. Vol.51.
[40]Jinliang Liu,Yao Wang (2022.01), “Predicting the chloride diffusion in concrete incorporating fly ash by a multi-scale model”Journal of Cleaner Production. Vol.330.
[41]Abu Sayed Mohammad Akid,Saif Hossain,Md. Imtiaz Uddin Munshi,Md Manjur A Elahi,Md. Habibur Rahman Sobuz,Vivian W.Y. Tam,Md. Saiful Islam (2021.06), “Assessing the influence of fly ash and polypropylene fiber on fresh, mechanical and durability properties of concrete” Journal of King Saud University - Engineering Sciences.
[42]Ankur Mehta,Rafat Siddique (2017.06), “Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers” Construction and Building Materials. Vol.141,pp.325-334.
[43]Ren Wei,Yuya Sakai (2022.01), “Improving the properties of botanical concrete based on waste concrete, wood, and kraft lignin powder” Powder Technology. Vol.397.
[44]Sukhdeo R. Karade, Mark Irle,Kevin Maher (2006.03), “Influence of granule properties and concentration on cork-cement compatibility”.
[45]D.K. Panesar,B. Shindman (2012.10), “The mechanical, transport and thermal properties of mortar and concrete containing waste cork” Cement and Concrete Composites. Vol.34,pp.982-992.
[46]Pokpong Rattanachu,Prajak Toolkasikorn,Weerachart Tangchirapat,Prinya Chindaprasirt,Chai Jaturapitakkul (2020.04), “Performance of recycled aggregate concrete with rice husk ash as cement binder” Cement and Concrete Composites. Vol.108.
[47]Hamza Beddaa,Francis Lavergne,Amor Ben Fraj,Jean-François Barthélémy,Jean-Michel Torrenti (2022.10), “Experimental investigation and micromechanical modeling of mechanical and durability properties of concrete based on shells from sediments” Cement and Concrete Composites. Vol.133.
[48]Doo-Yeol Yoo,Yujin Lee,Ilhwan You,Nemkumar Banthia,Goangseup Zi (2022.07), “Utilization of liquid crystal display (LCD) glass waste in concrete: A review” Cement and Concrete Composites. Vol.130.
[49]CP Baldé,V Forti,V Gray,R Kuehr,P Stegmann (2017), “The global e-waste monitor 2017: Quantities, flows and resources”
[50]V Forti,CP Balde,R Kuehr, G Bel (2020), “The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential”
[51]Her-Yung Wang (2009.01), “A study of the effects of LCD glass sand on the properties of concrete” Waste Management.Vol.29,pp.335-341.
[52]中華民國經濟部事業廢棄物再利用管理辦法第三條附表
[53]營建事業廢棄物再利用種類及管理方式
[54]K. HimaBindu,L. Narendra Naidu,S. Sri Hari,N. Ashok,O. Raj Mohan Redd,T. Sai Kumar,E. Sandeep (2023.07), “Experimental study on mechanical properties of M−25 grade concrete with cow dung ash and waste rubber tube pieces”
[55]Robert Bušić,Ivana Miličević,Ines Rakocija,Andrea Mendeš (2023.06), “Experimental investigation on workability and mechanical properties of carbon fiber reinforced high-strength concrete (HSC) containing waste bakelite aggregate (WBA)”
[56]Qingtao Li,Pu Liu,Minghua Wang,Haoran Xia (2023.04), “Effects of elevated temperature on the mechanical properties of concrete with aggregate of waste porcelain tile” Cement and Concrete Research. Vol.64.

電子全文 電子全文(網際網路公開日期:20280815)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊