|
[1] T. Otani, “Titanium Welding Technology,” 2007. Accessed: Oct. 23, 2022. [Online]. Available: https://www.nipponsteel.com/en/tech/report/nsc/pdf/n9515.pdf [2] Client Earth Communications, “Fossil fuels and climate change: the facts,” www.clientearth.org, Feb. 18, 2022. https://www.clientearth.org/latest/latest-updates/stories/fossil-fuels-and-climate-change-the-facts/ [3] Royal Society of Chemistry, “Titanium Element information, properties and uses | Periodic Table,” Rsc.org, 2011. https://www.rsc.org/periodic-table/element/22/titanium [4] The Editors of Encyclopedia Britannica, “titanium | Properties, Uses, & Facts,” Encyclopædia Britannica. Mar. 14, 2019. [Online]. Available: https://www.britannica.com/science/titanium [5] H. K. D. H. Bhadeshia, “Metallurgy of Titanium and its Alloys,” Cam.ac.uk, 2020. https://www.phasetrans.msm.cam.ac.uk/2004/titanium/titanium.html#:~:text=The%20crystal%20structure%20of%20titanium [6] S. R. Seagle, “titanium processing - The metal and its alloys | Britannica,” www.britannica.com. [7] H. Inoue, “Welding and joining of titanium and titanium alloys,” Welding International, vol. 10, no. 2, pp. 160–163, Jan. 1996, doi: 10.1080/09507119609548973. [8] P. L. Threadgill, “The prospects for joining titanium aluminides,” Materials Science and Engineering: A, vol. 192–193, pp. 640–646, Feb. 1995, doi: 10.1016/0921-5093(94)03346-3. [9] S. T. Auwal, S. Ramesh, C. Tan, Z. Zhang, X. Zhao, and S. M. Manladan, “Recent developments and challenges in welding of magnesium to titanium alloys,” Advances in materials Research, vol. 8, no. 1, pp. 47–73, 2019, doi: 10.12989/amr.2019.8.1.047. [10] D. Banerjee and J. C. Williams, “Perspectives on Titanium Science and Technology,” Acta Materialia, vol. 61, no. 3, pp. 844–879, Feb. 2013, doi: 10.1016/j.actamat.2012.10.043. [11] “Metallurgical Materials Science and Alloy Design - Titanium alloys,” www.dierk-raabe.com. https://www.dierk-raabe.com/titanium-alloys/ [12] T. M. Sridhar, S. P. Vinodhini, U. Kamachi Mudali, B. Venkatachalapathy, and K. Ravichandran, “Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena,” Materials Technology, vol. 31, no. 12, pp. 705–718, Aug. 2016, doi: 10.1080/10667857.2016.1220752. [13] Y. M. Baqer, S. Ramesh, F. Yusof, and S. M. Manladan, “Challenges and advances in laser welding of dissimilar light alloys: Al/Mg, Al/Ti, and Mg/Ti alloys,” The International Journal of Advanced Manufacturing Technology, vol. 95, no. 9–12, pp. 4353–4369, Jan. 2018, doi: 10.1007/s00170-017-1565-6. [14] K. Szymlek, “Review of Titanium and Steel Welding Methods,” Advances in Materials Sciences, vol. 8, no. 1, Jan. 2008, doi: 10.2478/v10077-008-0023-4. [15] B. Shanmugarajan and G. Padmanabham, “Fusion welding studies using laser on Ti-SS dissimilar combination,” Optics and Lasers in Engineering, vol. 50, pp. 1621–1627, Nov. 2012, doi: 10.1016/j.optlaseng.2012.05.008. [16] “MIG Welding Defects - A.E.D. Metal Products & Supplies,” www.aedmotorsport.com. https://www.aedmotorsport.com/news/mig-welding-defects. [17] S. Chen, M. Zhang, J. Huang, C. Cui, H. Zhang, and X. Zhao, “Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel,” Materials & Design, vol. 53, pp. 504–511, Jan. 2014, doi: 10.1016/j.matdes.2013.07.044. [18] “Material Properties | Website about Elements and Materials,” Material Properties. https://material-properties.org/ [19] “SMAW» Welding Classroom,” blog.weldingclassroom.com. http://blog.weldingclassroom.com/index.php/welding-info/smaw/ [20] C. Zhongbing et al., “Hot Cracking and its Characteristics of SMAW Weld Metal of T/P92 Steel,” Journal of Applied Sciences, vol. 13, no. 16, pp. 3110–3118, Aug. 2013, doi: 10.3923/jas.2013.3110.3118. [21] M. A. Wahab, “Manual Metal Arc Welding and Gas Metal Arc Welding,” Comprehensive Materials Processing, pp. 49–76, 2014, doi: 10.1016/b978-0-08-096532-1.00610-5. [22] Novarc, “What is Machine Welding?,” Novarc, May 22, 2015. https://www.novarctech.com/what-is-machine-welding-blog/#:~:text=Semi%2Dautomatic%20welding%20is%20manual [23] H. Zhang and J. Liu, “Microstructure characteristics and mechanical property of aluminum alloy/stainless steel lap joints fabricated by MIG welding–brazing process,” Materials Science and Engineering: A, vol. 528, no. 19–20, pp. 6179–6185, Jul. 2011, doi: 10.1016/j.msea.2011.04.039. [24] V. Dhinakaran, S. V. Shriragav, A. Fathima Yasin Fahmidha, and M. Ravichandran, “A review on the categorization of the welding process of pure titanium and its characterization,” Materials Today: Proceedings, vol. 27, pp. 742–747, 2020, doi: 10.1016/j.matpr.2019.12.034.. [25] “TIG Welding Process,” Oerlikon, Sep. 07, 2016. https://www.oerlikon-welding.com/processes/tig-welding-process#:~:text=The%20TIG%20process%20uses%20the [26] M. Samiuddin, J. Li, M. Taimoor, M. N. Siddiqui, S. U. Siddiqui, and J. Xiong, “Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization,” Defence Technology, Jun. 2020, doi: 10.1016/j.dt.2020.06.012. [27] K. Kalaiselvan, I. Dinaharan, and N. Murugan, “Routes for the Joining of Metal Matrix Composite Materials,” Encyclopedia of Materials: Composites, pp. 652–670, 2021, doi: 10.1016/b978-0-12-803581-8.11899-5. [28] “What is Laser Welding and How Does it Work?,” www.twi-global.com. https://www.twi-global.com/technical-knowledge/faqs/faq-how-does-laser-welding-work#:~:text=Laser%20welding%20is%20a%20process [29] “Laser Beam Welding: Working, Equipments, Applications & [PDF],” The Engineers Post, Mar. 02, 2020. https://www.theengineerspost.com/laser-beam-welding/ [30] A. F. H. Kaplan and J. Powell, “Spatter in laser welding,” Journal of Laser Applications, vol. 23, no. 3, p. 032005, Aug. 2011, doi: 10.2351/1.3597830. [31] G. Mathers, “Resistance welding processes,” The Welding of Aluminium and its Alloys, pp. 166–180, 2002, doi: 10.1533/9781855737631.166. [32] M. Pfeifer, “Manufacturing Process Considerations,” Materials Enabled Designs, pp. 115–160, 2009, doi: 10.1016/b978-0-7506-8287-9.00005-7. [33] SWANTEC, “Resistance Welding Overview,” SWANTEC - The Welding Simulation Software Company. https://www.swantec.com/technology/resistance-welding/ [34] R. Ashiri, H. Mostaan, and Y.-D. Park, “A Phenomenological Study of Weld Discontinuities and Defects in Resistance Spot Welding of Advanced High Strength TRIP Steel,” Metallurgical and Materials Transactions A, vol. 49, no. 12, pp. 6161–6172, Sep. 2018, doi: 10.1007/s11661-018-4900-0. [35] J. Norrish, “An introduction to welding processes,” Advanced Welding Processes, pp. 1–15, 2006, doi: 10.1533/9781845691707.1 [36] R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Materials Science and Engineering: R: Reports, vol. 50, no. 1–2, pp. 1–78, Aug. 2005, doi: 10.1016/j.mser.2005.07.001. [37] M. W. Safeen and P. Russo Spena, “Main Issues in Quality of Friction Stir Welding Joints of Aluminum Alloy and Steel Sheets,” Metals, vol. 9, no. 5, p. 610, May 2019, doi: 10.3390/met9050610. [38] K. K. Ramachandran, N. Murugan, and S. Shashi Kumar, “Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel,” Materials Science and Engineering: A, vol. 639, pp. 219–233, Jul. 2015, doi: 10.1016/j.msea.2015.04.089. [39] M. Dehghani, A. Amadeh, and S. A. A. Akbari Mousavi, “Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel,” Materials & Design, vol. 49, pp. 433–441, Aug. 2013, doi: 10.1016/j.matdes.2013.01.013. [40] G. Singh, A. S. Kang, K. Singh, and J. Singh, “Experimental comparison of friction stir welding process and TIG welding process for 6082-T6 Aluminium alloy,” Materials Today: Proceedings, vol. 4, no. 2, pp. 3590–3600, 2017, doi: 10.1016/j.matpr.2017.02.251.. [41] B. Derby and E. R. Wallach, “Theoretical model for diffusion bonding,” Metal Science, vol. 16, no. 1, pp. 49–56, Jan. 1982, doi: 10.1179/030634582790427028. [42] M. Ghosh and S. Chatterjee, “Effect of interface microstructure on the bond strength of the diffusion welded joints between titanium and stainless steel,” Materials Characterization, vol. 54, no. 4–5, pp. 327–337, May 2005, doi: 10.1016/j.matchar.2004.12.007. [43] S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G. B. Kale, and S. Chatterjee, “Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer,” Materials Science and Engineering: A, vol. 407, no. 1–2, pp. 154–160, Oct. 2005, doi: 10.1016/j.msea.2005.07.010. [44] F. Findik, “Recent developments in explosive welding,” Materials & Design, vol. 32, no. 3, pp. 1081–1093, Mar. 2011, doi: 10.1016/j.matdes.2010.10.017. [45] L. Liangyu, S. Yong, C. Jian, F. Yu, X. Xiaoyuan, and Y. Jin, “Study on microstructure and properties of TA1-304 stainless steel explosive welding cladding plate,” Materials Research Express, vol. 7, no. 2, p. 026557, Feb. 2020, doi: 10.1088/2053-1591/ab7357. [46] S. A. A. Akbari Mousavi and P. Farhadi Sartangi, “Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel,” Materials & Design, vol. 30, no. 3, pp. 459–468, Mar. 2009, doi: 10.1016/j.matdes.2008.06.016. [47] M. Prazmowski, M. Najwer, H. Paul, and D. Andrzejewski, “Influence of explosive welding parameters on properties of bimetal Ti-carbon steel,” MATEC Web of Conferences, vol. 94, p. 02012, 2017, doi: 10.1051/matecconf/20179402012. [48] M. P. Matheny and K. F. Graff, “Ultrasonic welding of metals,” Power Ultrasonics, pp. 259–293, 2015, doi: 10.1016/b978-1-78242-028-6.00011-9. [49] S. Elangovan, S. Semeer, and K. Prakasan, “Temperature and stress distribution in ultrasonic metal welding—An FEA-based study,” Journal of Materials Processing Technology, vol. 209, no. 3, pp. 1143–1150, Feb. 2009, doi: 10.1016/j.jmatprotec.2008.03.032. [50] “A Comparison of Wedge-Reed and Lateral Drive Ultrasonic Welding Systems Achieving Shear Motion.” [Online]. Available: http://www.ultrasonic-resonators.org/misc/references/articles/Sonobond_Ultrasonics__%27A_Comparison_of_Wedge-Reed_and_Lateral_Drive_Ultrasonic_Welding_Systems%27.pdf [51] H. T. Fujii, H. Endo, Y. S. Sato, and H. Kokawa, “Interfacial microstructure evolution and weld formation during ultrasonic welding of Al alloy to Cu,” Materials Characterization, vol. 139, pp. 233–240, May 2018, doi: 10.1016/j.matchar.2018.03.010. [52] T. Sasaki, T. Watanabe, Y. Hosokawa, and A. Yanagisawa, “Analysis for relative motion in ultrasonic welding of aluminium sheet,” Science and Technology of Welding and Joining, vol. 18, no. 1, pp. 19–24, Jan. 2013, doi: 10.1179/1362171812y.0000000066. [53] J.-Y. Lin, S. Nambu, K. Pongmorakot, and T. Koseki, “Effect of surface roughness on bonding interface formation of steel and Ni by ultrasonic welding,” Science and Technology of Welding and Joining, vol. 25, no. 2, pp. 157–163, Aug. 2019, doi: 10.1080/13621718.2019.1660461. [54] X. Gu, C. Sui, J. Liu, D. Li, Z. Meng, and K. Zhu, “Microstructure and mechanical properties of Mg/Al joints welded by ultrasonic spot welding with Zn interlayer,” Materials & Design, vol. 181, p. 108103, Nov. 2019, doi: 10.1016/j.matdes.2019.108103. [55] S. Elangovan, K. Prakasan, and V. Jaiganesh, “Optimization of ultrasonic welding parameters for copper to copper joints using design of experiments,” The International Journal of Advanced Manufacturing Technology, vol. 51, no. 1–4, pp. 163–171, Apr. 2010, doi: 10.1007/s00170-010-2627-1. [56] V. K. Patel, S. D. Bhole, and D. L. Chen, “Ultrasonic spot welded AZ31 magnesium alloy: Microstructure, texture, and lap shear strength,” Materials Science and Engineering: A, vol. 569, pp. 78–85, May 2013, doi: 10.1016/j.msea.2013.01.042. [57] Z. L. Ni, X. X. Wang, S. Li, and F. X. Ye, “Mechanical strength enhancement of ultrasonic metal welded Cu/Cu joint by Cu nanoparticles interlayer,” Journal of Manufacturing Processes, vol. 38, pp. 88–92, Feb. 2019, doi: 10.1016/j.jmapro.2019.01.014. [58] Z. L. Ni and F. X. Ye, “Ultrasonic spot welding of aluminum alloys: A review,” Journal of Manufacturing Processes, vol. 35, pp. 580–594, Oct. 2018, doi: 10.1016/j.jmapro.2018.09.009. [59] S. Nambu, K. Seto, J.-Y. Lin, and T. Koseki, “Development of a bonding interface between steel/steel and steel/Ni by ultrasonic welding,” Science and Technology of Welding and Joining, vol. 23, no. 8, pp. 687–692, May 2018, doi: 10.1080/13621718.2018.1473077. [60] A. A. Mukhametgalina, M. A. Murzinova, and A. A. Nazarov, “Microstructure and properties of solid state joints of titanium sheets produced by ultrasonic welding,” IOP Conference Series: Materials Science and Engineering, vol. 1008, no. 1, p. 012007, Dec. 2020, doi: 10.1088/1757-899x/1008/1/012007. [61] L. Xu, L. Wang, Y.-C. Chen, J. D. Robson, and P. B. Prangnell, “Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds,” Metallurgical and Materials Transactions A, vol. 47, no. 1, pp. 334–346, Oct. 2015, doi: 10.1007/s11661-015-3179-7. [62] J. W. Yang, B. Cao, X. C. He, and H. S. Luo, “Microstructure evolution and mechanical properties of Cu–Al joints by ultrasonic welding,” Science and Technology of Welding and Joining, vol. 19, no. 6, pp. 500–504, May 2014, doi: 10.1179/1362171814y.0000000218. [63] A. Emamian, S. F., and A. Khajepour, “In-Situ Deposition of Metal Matrix Composite in Fe-Ti-C System Using Laser Cladding Process,” Metal, Ceramic and Polymeric Composites for Various Uses, Jul. 2011, doi: 10.5772/10593. [64] J. L. Murray, “The Fe−Ti (Iron-Titanium) system,” Bulletin of Alloy Phase Diagrams, vol. 2, no. 3, pp. 320–334, Dec. 1981, doi: 10.1007/bf02868286. [65] D. Cascadan and C. Roberto Grandini, “Structure, Microstructure, and Some Selected Mechanical Properties of Ti-Ni Alloys,” Recent Advancements in the Metallurgical Engineering and Electrodeposition, Apr. 2020, doi: 10.5772/intechopen.86717. [66] J.-Y. Lin, S. Nambu, and T. Koseki, “Evolution of bonding interface during ultrasonic welding between steel and aluminium alloy,” Science and Technology of Welding and Joining, vol. 24, no. 1, pp. 83–91, Jun. 2018, doi: 10.1080/13621718.2018.1491376. [67] H. M. Zhang, Y. J. Chao, and Z. Luo, “Effect of interlayer on microstructure and mechanical properties of Al–Ti ultrasonic welds,” Science and Technology of Welding and Joining, vol. 22, no. 1, pp. 79–86, Jun. 2016, doi: 10.1080/13621718.2016.1193386. [68] W. Zhang et al., “On the metallurgical joining mechanism during ultrasonic spot welding of NiTi using a Cu interlayer,” Scripta Materialia, vol. 178, pp. 414–417, Mar. 2020, doi: 10.1016/j.scriptamat.2019.12.012. [69] J.-Y. Lin, S. Nambu, M. Liu, and T. Koseki, “Influence of Al and Ni interlayers on interfacial strength evolution during ultrasonic welding of ultra-low-carbon steel and pure Ti,” Materials Science and Engineering: A, vol. 798, p. 140073, Nov. 2020, doi: 10.1016/j.msea.2020.140073. [70] I. Taufiqurrahman, T. Lenggo Ginta, and M. Mustapha, “The effect of holding time on dissimilar resistance spot welding of stainless steel 316L and Ti6Al4V titanium alloy with aluminum interlayer,” Materials Today: Proceedings, vol. 46, pp. 1563–1568, 2021, doi: 10.1016/j.matpr.2020.07.237. [71] H. P. C. Daniels, “Ultrasonic welding,” Ultrasonics, vol. 3, no. 4, pp. 190–196, Oct. 1965, doi: 10.1016/0041-624X(65)90169-1. [72] J.-Y. Lin, S. Nambu, and T. Koseki, “Interfacial phenomena during ultrasonic welding of ultra-low-carbon steel and pure Ti,” Scripta Materialia, vol. 178, pp. 218–222, Mar. 2020, doi: 10.1016/j.scriptamat.2019.11.037. [73] G. Welsch, R. Boyer, and E. W. Collings, Materials Properties Handbook: Titanium Alloys. ASM International, 1993. Accessed: Oct. 23, 2022. [Online]. Available: https://books.google.com.tw/books?id=x3rToHWOcD8C&printsec=frontcover&hl=id&source=gbs_ViewAPI&redir_esc=y#v=onepage&q&f=false [74] R. J. Contieri, M. Zanotello, and R. Caram, “Recrystallization and grain growth in highly cold worked CP-Titanium,” Materials Science and Engineering: A, vol. 527, no. 16–17, pp. 3994–4000, Jun. 2010, doi: 10.1016/j.msea.2010.03.023. [75] “Tribological properties of titanium-based alloys,” Surface Engineering of Light Alloys, pp. 58–80, Jan. 2010, doi: 10.1533/9781845699451.1.58. [76] H. Ohfuji, “Structure of framboidal pyrite: An electron backscatter diffraction study,” American Mineralogist, vol. 90, no. 11–12, pp. 1693–1704, Nov. 2005, doi: 10.2138/am.2005.1829. [77] “Grain size, Part II: How metal grain size affects a bending operation,” www.thefabricator.com. https://www.thefabricator.com/thefabricator/article/bending/grain-size-part-ii-how-metal-grain-size-affects-a-bending-operation#:~:text=A%20finer%20grain%20size%20means%20a%20greater%20density%20of%20grain [78] J.-Y. Lin, Z.-H. Lai, T. Otsuki, H.-W. Yen, and S. Nambu, “Gradient microstructure and interfacial strength of CoCrFeMnNi high-entropy alloy in solid-state ultrasonic welding,” Materials Science and Engineering: A, vol. 825, p. 141885, Sep. 2021, doi: 10.1016/j.msea.2021.141885. [79] S. Al-Qawabah and A. Zaid, “Different Methods for Grain Refinement of Materials,” International Journal Of Scientific & Engineering Research, vol. 7, no. 7, 2016, Accessed: Oct. 23, 2022. [Online]. Available: [80] “What information does EBSD provide?,” Oxford Instruments. https://www.ebsd.com/ebsd-applications/what-information-does-ebsd-provide [81] D. Raabe, “Recovery and Recrystallization: Phenomena, Physics, Models, Simulation,” Physical Metallurgy, pp. 2291–2397, 2014, doi: 10.1016/b978-0-444-53770-6.00023-x. [82] “Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries,” Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, pp. 39–54, Jan. 2016, doi: 10.1016/B978-0-08-100117-2.00010-8. [83] C. Q. Zhang, J. D. Robson, O. Ciuca, and P. B. Prangnell, “Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints,” Materials Characterization, vol. 97, pp. 83–91, Nov. 2014, doi: 10.1016/j.matchar.2014.09.001. [84] M. Shakil, N. H. Tariq, M. Ahmad, M. A. Choudhary, J. I. Akhter, and S. S. Babu, “Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints,” Materials & Design, vol. 55, pp. 263–273, Mar. 2014, doi: 10.1016/j.matdes.2013.09.074. [85] H. Okamoto, “H-Ti (Hydrogen-Titanium),” Journal of Phase Equilibria and Diffusion, vol. 32, no. 2, pp. 174–175, Jan. 2011, doi: 10.1007/s11669-010-9842-1. [86] Z.-L. Ni and F.-X. Ye, “Microstructure and Mechanical Properties of an Ultrasonic Spot-Welded Aluminum-to-Aluminum Joint: Response to Interlayer Thickness,” Materials, vol. 12, no. 3, p. 369, Jan. 2019, doi: 10.3390/ma12030369. [87] T. I. Awan, A. Bashir, and A. Tehseen, Chemistry of Nanomaterials: Fundamentals and Applications. Elsevier, 2020. [Online]. Available: https://books.google.com.tw/books?id=1ZjhDwAAQBAJ&pg=PA51&lpg=PA51&dq=Almas+Bashir [88]Wan, S. H. (2013). Solid lubricant: Soft metal. Encyclopedia of Tribology, 3152–3159. https://doi.org/10.1007/978-0-387-92897-5_1231 [89]Hard Metal. Edelstahl härten. Available at: https://www.hardening-of-stainless-steel.com/glossar/hard-metal/ (Accessed: November 11, 2022).
|