跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 04:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游沐榕
研究生(外文):YU, MU-JUNG
論文名稱:應用田口法於嵌入式熱管散熱器之佳化數值研究
論文名稱(外文):Numerical study on optimization of heat pipe embedded heatsink using Taguchi method
指導教授:陳清祺陳清祺引用關係鄭鴻斌鄭鴻斌引用關係
指導教授(外文):CHEN, CHIN-CHICHENG, HONG-PING
口試委員:曾彥翔陳清祺鄭鴻斌
口試委員(外文):TSENG, YEN-HSIANGCHEN, CHIN-CHICHENG, HONG-PING
口試日期:2023-06-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:92
中文關鍵詞:嵌入式熱管散熱器最佳化田口法機架式伺服器望小特性散熱鰭片2U
外文關鍵詞:Embedded heat pipe radiatorsoptimizationTaguchi methodrack-mounted serverssmall featuresheat dissipationThermal fins2U
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著5G、物聯網時代來臨,雲端服務逐步擴增之下,伺服器市場成長持續看好,運算性能的需求以及瓦數攀升,對於伺服器市場將大幅增長。然而在伺服器機櫃也有著各種空間限制,其研發階段所耗費之成本相當可觀。因此本論文將以嵌入式熱管散熱設計為探討重點,應用田口法探討嵌入式熱管散熱器在強制對流下最佳化的數值研究,並在四種設計參數中且每組參數皆具有三種水準之下,本文選用L9 (34) 的直交表來執行研究。其原始設計為嵌入式四隻熱管散熱器作為本論文的研究比較基礎,使用FloTHERM模擬分析軟體比較各式散熱方案所造成的熱傳導性能變化數值研究,以利減少設計成本。
在符合其外型規範的條件下,文中討論的參數有:嵌入式熱管底部配置 A (4支折彎、5支折彎、5支直線排列),鰭片間距 B (1.5 mm~2.1 mm) , 鰭片厚度 C (0.2 mm~0.4 mm),熱源接觸面D (銅片+鋁底、銅底、鋁底)。本文中主要探討的是熱管嵌入底部配置和鰭片間的距離對散熱器熱阻的影響,並且應用田口法來找尋最佳化數值參數。

With the advent of the era of 5G and the Internet of Things and the gradual expansion of cloud services, the growth of the server market continues to be optimistic. The demand for computing performance and the rising wattage will significantly increase the server market. However, the server cabinet has various space constraints, and the cost of its research and development stage is considerable. Therefore, this paper will focus on the heat dissipation design of embedded heat pipes, and use the Taguchi method to discuss the numerical simulation of the optimization of embedded heat pipe radiators under forced convection, and in the four design parameters and each set of parameters has three levels Next, this paper chooses the orthogonal table of L9 (34) to carry out the experiment. Its original design is embedded with four heat pipe radiators as the basis for the research comparison of this thesis. To reduce the design cost, they are using FloTHERM simulation analysis software to compare the numerical research on the change of heat conduction performance caused by various heat dissipation schemes.
Under the condition of conforming to its appearance specification, the parameters discussed in this paper are bottom configuration A of the embedded heat pipe (4 bent, 5 bent, 5 arranged in a straight line), fin spacing B (1.5 mm~2.1 mm), Fin thickness C (0.2 mm~0.4 mm), heat source contact surface D (copper sheet + aluminum bottom, copper bottom, aluminum bottom). This paper mainly discusses the influence of the heat pipe-embedded bottom configuration and the distance between the fins on the thermal resistance of the heat sink and uses the Taguchi method to find the optimal numerical parameters.

摘要 i
ABSTRACT ii
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1散熱器種類 3
1.2.2熱管種類 6
1.2.3 工作流體 18
1.2.4 熱管長度 21
1.3 研究背景與動機 23
第二章 理論基礎 24
2.1 熱傳概論 24
2.1.1 熱傳導(Conduction Heat Transfer) 24
2.1.2 熱對流(Convection Heat Transfer) 25
2.1.3 熱輻射(Radiation Heat Transfer) 26
2.2 伺服器概述 27
2.2.1 伺服器分類 27
2.2.2 機架式伺服器 29
2.3 田口方法 31
2.3.1望目特性 33
2.3.2望小特性 33
2.3.3望大特性 33
第三章 研究方法 34
3.1 實驗設備 34
3.1.1測試原理 47
3.1.2 LW-9641軟體 49
3.2 模擬參數 57
3.3 研究步驟 58
第四章 結果與討論 60
4.1 2U散熱器熱性能實驗 61
4.2 網格參數選用 64
4.3 田口法 72
第五章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 85
參考文獻 86


[1]Y.Wang, B.Wang, K.Zhu, H.Li, W.He, S.Liu, “Energy saving potential of using heat pipes for CPU cooling”, Appl. Therm. Eng., vol 143, no July, bll 630–638, 2018, doi: 10.1016/j.applthermaleng.2018.07.132.
[2]J. C.Wang, “Superposition method to investigate the thermal performance of heat sink with embedded heat pipes”, Int. Commun. Heat Mass Transf., vol 36, no 7, bll 686–692, 2009, doi: 10.1016/j.icheatmasstransfer.2009.04.008.
[3]S. S.Gore A. S.Dhoble, “Server processor heat sink analysis and modifications to improve its thermal performance”, Mater. Today Proc., vol 82, bll 208–216, 2023, doi: 10.1016/j.matpr.2023.01.118.
[4]S.Chen et al., “A miniature atomization-air-cooled heat sink for electronic chips”, Int. J. Therm. Sci., vol 190, no April, bl 108305, 2023, doi: 10.1016/j.ijthermalsci.2023.108305.
[5]W.He et al., “Energy & Buildings Effects of different water-cooled heat sinks on the cooling system performance in a data center”, Energy Build., vol 292, no May, bl 113162, 2023, doi: 10.1016/j.enbuild.2023.113162.
[6]W.He et al., “Performance analysis and structural optimization of a finned liquid-cooling radiator for chip heat dissipation”, Appl. Energy, vol 327, no October, bl 120048, 2022, doi: 10.1016/j.apenergy.2022.120048.
[7]D. A.Reay, P. A.Kew, R. J.McGlen, “Introduction”, Heat Pipes, bll xxi–xxvii, 2014, doi: 10.1016/b978-0-08-098266-3.00012-1.
[8]J.Cheng, G.Wang, Y.Zhang, P.Pi, enS.Xu, “Enhancement of capillary and thermal performance of grooved copper heat pipe by gradient wettability surface”, Int. J. Heat Mass Transf., vol 107, bll 586–591, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.10.078.
[9]M.Hamidnia, Y.Luo, Z.Li, X.Wang, “Capillary and thermal performance enhancement of rectangular grooved micro heat pipe with micro pillars”, Int. J. Heat Mass Transf., vol 153, bl 119581, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119581.
[10]J.Lu, J.Ding, T.Yu, enX.Shen, “Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe”, Appl. Therm. Eng., vol 88, bll 491–498, 2015, doi: 10.1016/j.applthermaleng.2014.09.020.
[11]Z.Li, “Design and preliminary experiments of a novel heat pipe using a spiral coil as capillary wick”, Int. J. Heat Mass Transf., vol 126, bll 1240–1251, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.05.110.
[12]J.Li, Y.Zou, L.Cheng, R.Singh, A.Akbarzadeh, “Effect of fabricating parameters on properties of sintered porous wicks for loop heat pipe”, Powder Technol., vol 204, no 2–3, bll 241–248, 2010, doi: 10.1016/j.powtec.2010.08.008.
[13]F. A.Dominguez Espinosa, T. B.Peters, J. G.Brisson, “Effect of fabrication parameters on the thermophysical properties of sintered wicks for heat pipe applications”, Int. J. Heat Mass Transf., vol 55, no 25–26, bll 7471–7486, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.07.037.
[14]L. L.Jiang et al., “Design and fabrication of sintered wick for miniature cylindrical heat pipe”, Trans. Nonferrous Met. Soc. China (English Ed., vol 24, no 1, bll 292–301, 2014, doi: 10.1016/S1003-6326(14)63060-0.
[15]S.Maneemuang, N.Kammuang-Lue, P.Terdtoon, enP.Sakulchangsatjatai, “Effect of pipe flattening on pressure drop in vapor core and thermal characteristic of miniature round and flat-shape heat pipe with sintered fiber wick”, Int. J. Heat Mass Transf., vol 176, bl 121416, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121416.
[16]J.Zhang, L. xianLian, Y.Liu, “Liquid phase enhanced sintering of porous aluminum for cylindrical Al-acetone heat pipe”, Int. J. Heat Mass Transf., vol 152, bl 119512, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119512.
[17]M.Khalili M. B.Shafii, “Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe”, Appl. Therm. Eng., vol 94, bll 59–75, 2016, doi: 10.1016/j.applthermaleng.2015.10.120.
[18]W.Ling, W.Zhou, R.Liu, Q.Qiu, J.Liu, “Thermal performance of loop heat pipe with porous copper fiber sintered sheet as wick structure”, Appl. Therm. Eng., vol 108, bll 251–260, 2016, doi: 10.1016/j.applthermaleng.2016.07.121.
[19]R.Kempers, D.Ewing, C. Y.Ching, “Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes”, Appl. Therm. Eng., vol 26, no 5–6, bll 589–595, 2006, doi: 10.1016/j.applthermaleng.2005.07.004.
[20]W.Zhou, Y.Li, Z.Chen, L.Deng, B.Li, “Experimental study on the heat transfer performance of ultra-thin fl attened heat pipe with hybrid spiral woven mesh wick structure”, vol 170, no May 2019, 2020, doi: 10.1016/j.applthermaleng.2020.115009.
[21]S.Zu, X.Liao, Z.Huang, D.Li, Q.Jian, “International Journal of Heat and Mass Transfer Visualization study on boiling heat transfer of ultra-thin flat heat pipe with single layer wire mesh wick”, Int. J. Heat Mass Transf., vol 173, bl 121239, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121239.
[22]W.Zhou, Y.Li, Z.Chen, L.Deng, Y.Gan, “International Journal of Heat and Mass Transfer Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones”, Int. J. Heat Mass Transf., vol 146, bl 118792, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.118792.
[23]W.Zhou, Y.Li, Z.Chen, L.Deng, Y.Gan, “A novel ultra-thin fl attened heat pipe with biporous spiral woven mesh wick for cooling electronic devices”, Energy Convers. Manag., vol 180, no September 2018, bll 769–783, 2019, doi: 10.1016/j.enconman.2018.11.031.
[24]S.DeSchampheleire, K.DeKerpel, T.Deruyter, P.DeJaeger, M.DePaepe, “Experimental study of small diameter fi bres as wick material for capillary-driven heat pipes”, Appl. Therm. Eng., vol 78, bll 258–267, 2015, doi: 10.1016/j.applthermaleng.2014.12.027.
[25]S.Huang, Z.Wan, X.Zhang, X.Yang, Y.Tang, “Evaluation of capillary performance of a stainless steel fi ber – powder composite wick for stainless steel heat pipe”, Appl. Therm. Eng., vol 148, no August 2017, bll 1224–1232, 2019, doi: 10.1016/j.applthermaleng.2018.12.014.
[26]Y.Zhang, T.Luan, H.Jiang, J.Liu, “International Journal of Heat and Mass Transfer Visualization study on start-up characteristics of a loop heat pipe with a carbon fiber capillary wick”, Int. J. Heat Mass Transf., vol 169, bl 120940, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.120940.
[27]J.Liu, Y.Zhang, C.Feng, L.Liu, T.Luan, “Study of copper chemical-plating modi fi ed polyacrylonitrile-based carbon fi ber wick applied to compact loop heat pipe”, Exp. Therm. Fluid Sci., vol 100, no July 2018, bll 104–113, 2019, doi: 10.1016/j.expthermflusci.2018.07.008.
[28]T.Zhao et al., “Experimental investigation of a loop heat pipe with a flat evaporator and cupric oxide nanofluids as working fluid”, Energy Reports, vol 7, bll 7693–7703, 2021, doi: 10.1016/j.egyr.2021.10.114.
[29]M.Vijayakumar, P.Navaneethakrishnan, G.Kumaresan, enR.Kamatchi, “A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids”, J. Taiwan Inst. Chem. Eng., vol 81, no November, bll 190–198, 2017, doi: 10.1016/j.jtice.2017.10.032.
[30]S. W.Kang, W. C.Wei, S. H.Tsai, C. C.Huang, “Experimental investigation of nanofluids on sintered heat pipe thermal performance”, Appl. Therm. Eng., vol 29, no 5–6, bll 973–979, 2009, doi: 10.1016/j.applthermaleng.2008.05.010.
[31]Y.Zhou, X.Cui, J.Weng, S.Shi, H.Han, C.Chen, “Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids”, Powder Technol., vol 332, bll 371–380, 2018, doi: 10.1016/j.powtec.2018.02.048.
[32]S.Wang, J.Chen, Y.Hu, W.Zhang, “Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe”, Appl. Therm. Eng., vol 31, no 14–15, bll 2367–2373, 2011, doi: 10.1016/j.applthermaleng.2011.03.037.
[33]J.Seo, I. C.Bang, J. Y.Lee, “Length effect on entrainment limit of large-L/D vertical heat pipe”, Int. J. Heat Mass Transf., vol 97, bll 751–759, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.02.065.
[34]K.Zeghari, H.Louahlia, “Flat miniature heat pipe with sintered porous wick structure: xperimental and mathematical studies.”, Int. J. Heat Mass Transf., vol 158, bll 1–37, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120021.
[35]X.Pang, H.Wang, X.Wang, W.Dai, S.Ma, “Numerical investigation on the influence of radial thermal conduction in a co-axial pulse tube cooler”, Int. J. Refrig., vol 139, no December 2021, bll 128–135, 2022, doi: 10.1016/j.ijrefrig.2022.03.031.
[36]S.Maruyama, S.Moriya, “Newton’s Law of Cooling: Follow up and exploration”, Int. J. Heat Mass Transf., vol 164, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120544.
[37]S.Hod, “Hawking radiation and the Stefan-Boltzmann law: The effective radius of the black-hole quantum atmosphere”, Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys., vol 757, bll 121–124, 2016, doi: 10.1016/j.physletb.2016.03.071.
[38]M. S.Obaidat, H.Khalid, K.Sadiq, “A methodology for evaluating the performance of CISC computer systems under single and two-level cache environments”, Microprocess. Microprogramming, vol 40, no 6, bll 411–426, 1994, doi: 10.1016/0165-6074(94)90106-6.
[39]J.Khazam, D.Mowery, “The commercialization of RISC: Strategies for the creation of dominant designs”, Res. Policy, vol 23, no 1, bll 89–102, 1994, doi: 10.1016/0048-7333(94)90028-0.
[40]J.Xu, P.Tian, F.Du, Y.Wan, F.Tang, Q.Yang, “Development and implementation of EPICS application program of HL-2A host engineering parameters acquisition system”, Fusion Eng. Des., vol 151, no November 2019, 2020, doi: 10.1016/j.fusengdes.2019.111404.
[41]V.Molina García, S.Sasi, D. S.Efremenko, A.Doicu, D.Loyola, “Radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements”, J. Quant. Spectrosc. Radiat. Transf., vol 213, bll 228–240, 2018, doi: 10.1016/j.jqsrt.2018.03.014.
[42]H.Moazamigoodarzi, S.Pal, D.Down, M.Esmalifalak, I. K.Puri, “Performance of a rack mountable cooling unit in an IT server enclosure”, Therm. Sci. Eng. Prog., vol 17, no February 2019, bl 100395, 2020, doi: 10.1016/j.tsep.2019.100395.
[43]L.Phan, B.Hu, C. X.Lin, “An evaluation of turbulence and tile models at server rack level for data centers”, Build. Environ., vol 155, no February, bll 421–435, 2019, doi: 10.1016/j.buildenv.2019.03.060.
[44]W.He et al., “Performance optimization of server water cooling system based on minimum energy consumption analysis”, Appl. Energy, vol 303, no April, bl 117620, 2021, doi: 10.1016/j.apenergy.2021.117620.
[45]A.Sakanova, S.Alimohammadi, J.McEvoy, S.Battaglioli, T.Persoons, “Multi-objective layout optimization of a generic hybrid-cooled data centre blade server”, Appl. Therm. Eng., vol 156, no March, bll 514–523, 2019, doi: 10.1016/j.applthermaleng.2019.04.071.
[46]W. X.Chu, M. K.Tsai, S. Y.Jan, H. H.Huang, C. C.Wang, “CFD analysis and experimental verification on a new type of air-cooled heat sink for reducing maximum junction temperature”, Int. J. Heat Mass Transf., vol 148, bl 119094, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.119094.
[47]N.Lamaison, C. L.Ong, J. B.Marcinichen, J. R.Thome, “Two-phase mini-thermosyphon electronics cooling: Dynamic modeling, experimental validation and application to 2U servers”, Appl. Therm. Eng., vol 110, bll 481–494, 2017, doi: 10.1016/j.applthermaleng.2016.08.198.
[48]W. H.Chen et al., “A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)”, Renew. Sustain. Energy Rev., vol 169, no August, bl 112917, 2022, doi: 10.1016/j.rser.2022.112917.
[49]Z. R.Abdulghani, “A novel experimental case study on optimization of Peltier air cooler using Taguchi method”, Results Eng., vol 16, no July, bl 100627, 2022, doi: 10.1016/j.rineng.2022.100627.
[50]M.Shilpa, N. V. R.Naidu, “Quantitative Evaluation of Quality Loss for Nominal-the-best Quality Characteristic”, Procedia Mater. Sci., vol 5, bll 2356–2362, 2014, doi: 10.1016/j.mspro.2014.07.479.
電子全文 電子全文(網際網路公開日期:20280621)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊