跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉訓偉
研究生(外文):YEH, HSUN-WEI
論文名稱:不同結構型化學濾網吸附效率與再生性能之研究
論文名稱(外文):Study on the Adsorption Efficiency and Regenerative Performance of Chemical Filters with Different Structural Types
指導教授:胡石政
指導教授(外文):HU, SHIH-CHENG
口試委員:胡石政曹志明林廸
口試委員(外文):HU, SHIH-CHENGTSAO, JHY-MINGTI, LIN
口試日期:2023-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:68
中文關鍵詞:化學濾網氣態分子污染物異丙醇甲苯再生性活性碳
外文關鍵詞:Chemical FiltersAirborne Molecular ContaminantsIsopropanolTolueneRegenerationActivated Carbon
相關次數:
  • 被引用被引用:1
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體市場需求逐漸增大,半導體技術發展越來越迅速,製程線徑也越來越小。隨著製程線徑的逐漸縮小,半導體元件的製造變得更加複雜,製程中的各種挑戰也變得越來越大。其中,氣態分子污染物(Airborne Molecular Contamination,AMCs)成為了一個極具挑戰性的問題。氣態分子污染物是指在半導體製造過程中產生的各種氣體,包括揮發性有機化合物、酸鹼物質、水分子、氮氣、氧氣等等。這些氣體可能會在製造過程中附著在晶片表面,對元件性能造成不利影響。由於製造過程的環境非常敏感,對於AMCs的控制要求非常嚴格。
在半導體製造過程中,潔淨室是非常重要的環節。潔淨室內的空氣質量必須保持非常高的水平,才能確保晶片的品質。在潔淨室內,空氣濾網是一個非常重要的元件,用於過濾空氣中的微粒。但是,空氣濾網對於氣態分子污染物的過濾效果不佳,因此需要使用化學濾網來去除和控制這些氣體。
本研究係利用JIS 9901全尺寸化學濾網測試風道系統,並參照ISO 10121[1]測試規範,進行不同化學濾網吸附效率之實驗,主要採用活性碳(AC)製成化學濾網,化學濾網主要分別為平版型、圓筒型、多V型為主要實驗研究,此實驗使用半導體產業常用於洗滌晶圓之異丙醇、甲苯作為實驗污染源,濃度定義在10ppm±1%,實驗結果表明,驗證空氣濾網測試實驗平台進行對氣態分子異丙醇、甲苯化學濾網吸附效率的性能研究測試,由測試實驗平台可控制不同參數值如濃度與風速對不同型式化學濾網進行實驗測試去除效率性能,可以顯示出化學濾網組成差異有明顯影響過濾吸附去除效率。

As the demand for the semiconductor market gradually increases, the semiconductor technology is developing more rapidly and the process linewidth is getting smaller and smaller. With the gradual reduction of process linewidth, the manufacture of semiconductor components has become more complicated, and various challenges in the process have become increasingly larger. Among them, Airborne Molecular Contamination (AMCs) has become a challenging issue. AMCs refer to various gases produced during the semiconductor manufacturing process, including volatile organic compounds, acidic and alkaline substances, water molecules, nitrogen, oxygen, etc. These gases may adhere to the surface of the chip during the manufacturing process,which may adversely affect the performance of the components. Since the environment of the manufacturing process is very sensitive, the control requirements for AMCs are very strict.

In the semiconductor manufacturing process, the cleanroom is a very important link. The air quality in the cleanroom must be maintained at a very high level to ensure the quality of the chips. In the cleanroom, air filters are a very important component used to filter particulates in the air. However, the filtering effect of air filters on gaseous molecular pollutants is not good, so it is necessary to use chemical filters to remove and control these gases.
This study uses the JIS 9901 full-size chemical filter test wind tunnel system, and refers to the ISO 10121[1] test specifications, to conduct experiments on the adsorption efficiency of different chemical filters. The chemical filters are mainly made of activated carbon (AC) and primarily consist of flat, cylindrical, and multi-V type filters for the main experimental research. This experiment uses isopropanol and toluene, which are commonly used in the semiconductor industry for wafer cleaning, as the experimental pollution sources, and the concentration defined at 10ppm±1%. The experimental results show that the air filter test experiment platform is used to conduct performance research tests on the adsorption efficiency of gaseous molecular isopropanol and toluene chemical filters. The test experiment platform can control different parameter values such as concentration and wind speed to conduct experimental tests on the removal efficiency performance of different types of chemical filters. It can show that the differences in the composition of the chemical filters have a significant impact on the filtration adsorption removal efficiency.

摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 潔淨室污染源 3
2.2 AMCs分類與規範概述 7
2.3 AMCs移除原理 10
2.4 異丙醇及甲苯物化特性與應用 12
2.5 濾網框架型態與應用 15
2.6 濾網結構框架 19
2.7 常見的濾材 20
2.7.1 活性碳(Activated Carbon) 20
2.7.2 分子篩/沸石(Molecular sieve/ Zeolite) 22
2.8 再生方式 23
第三章 研究方法 25
3.1 全尺寸化學濾網測試風道系統 25
3.1.1 污染源釋放與CDA系統 26
3.2 實驗設備 28
3.2.1 無油空壓機 28
3.2.2 冷凍式乾燥機 29
3.2.3 吸附式乾燥機 30
3.2.4 立式儲氣筒 31
3.2.5 質量流量控制器 32
3.2.6 蠕動泵浦 33
3.2.7 污染源蒸發器 34
3.3 實驗儀器 34
3.3.1 手提式VOC氣體PID偵測器 34
3.3.2 微壓力計 36
3.3.3 熱線式風速計 37
3.3.4 溫溼度傳感器 38
3.4 實驗條件 39
3.5 實驗方法 40
3.5.1 溫溼度調整 40
3.5.2 進風截面風速與阻力實驗 41
3.5.3 異丙醇(IPA)污染源濃度穩定度調整 41
3.5.4 甲苯 (Toluene)污染源濃度穩定度調整 42
3.5.5 去除過濾效率實驗 43
3.5.6 飽和吸附容量實驗 45
3.6 實驗流程 46
第四章 研究結果 47
4.1 化學濾網性能測試 47
4.2 平板型活性碳濾網-異丙醇 49
4.3 平板型活性碳濾網-甲苯 51
4.4 平板型活性碳濾網(加厚)-異丙醇 53
4.5 圓筒型活性碳濾網-異丙醇 55
4.6 筒型沸石濾網-異丙醇 57
4.7 摺頸型活性碳濾網-甲苯 59
4.8 箱型活性碳濾網-甲苯 61
第五章 結論 63
5.1 結論 63
5.2 建議 64
參考文獻 65


[1] SEMI,SEMI F21-1102:Classification of Airborne Molecular Contaminnant Levels in Clean Environments.,
[2] “Cleanrooms and associated controlled environments,” ISO14644-1 First Edition, 1999.
[3] Muller, A.J., et al., Volatile cleanroom contaminants: sources and detection, in Solid State Technology. 1994. p. 61
[4] Kitajima, H. and Y. Shiramizu. Requirements for contamination control in the gigabit era. 1997.
[5] Pathangey, B., L.D. McCarthy, and D.C. Skilbred, Effect of metal contaminants in pre-gate oxide cleans for sub-100-nm devices. IEEE Transactions on Device and Materials Reliability, 2005. 5: p. 631-638.
[6] Chuang, T.-S. and L.-M. Chang, To mitigate airborne molecular contamination through ultra-pure air system. Building and Environment, 2013. 59: p. 153-163.
[7] Barzaghi, Purged gas purification for contamination control of DUV stepper lenses. 2001.
[8] Kinkead, D., A. Grayfer, and O. Kishkovich, Prevention of optics and resist contamination in 300-mm lithography: improvements in chemical air filtration. Proceedings of SPIE - The International Society for Optical Engineering, 2001.
[9] Wu, C.H., et al., Measurement of toxic volatile organic compounds in indoor air of semiconductor foundries using multisorbent adsorption/thermal desorption coupled with gas chromatography-mass spectrometry. J Chromatogr A, 2003. 996(1-2): p. 225-31.
[10] 楊玉玲, 電子業揮發性有機物排放特性及其管理之研究, in 環境工程與管理研究所. 2009, 國立臺北科技大學: 台北市. p. 166.
[11] International Roadmap for Devieces and Systems (IRDS) - Table YE3 Technology Requirements for Wafer Environmental Contamination Control, Piscataway,. Available from: https://www.businesswire.com/news/home/20180618005183/en/IEEE-Releases-the-International-Roadmap-for-Devices-and-Systems-IRDS.
[12] International Roadmap for Devieces and Systems (IRDS) - Table YE5 Proposed New Classification of AMC Contaminants,. Available from: https://irds.ieee.org/images/files/pdf/2021/2021IRDS_FAC.pdf.
[13] 舒穎婕, 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討, in 環境工程研究所在職專班. 2018, 國立中央大學.
[14] Pathangey, B., L.D. McCarthy, and D.C. Skilbred, Effect of metal contaminants in pre-gate oxide cleans for sub-100-nm devices. IEEE Transactions on Device and Materials Reliability, 2005. 5(4): p. 631-638.
[15] Phillips, M., J. Greenberg, and J. Awad, Metabolic and environmental origins of volatile organic compounds in breath. J Clin Pathol, 1994. 47(11): p. 1052-3.
[16] contributors, W., Volatile organic compound, in Wikipedia, The Free Encyclopedia.
[17] Semiconductor Equipment and Materials International, SEMI standard F21-95, "Classification of Airborne Molecular Contaminant Levels in Clean Environments, "Mountain View, CA, USA,. 1996.
[18] 康育豪、黃蒨芸、Kang, Yuhao、Huang, Chien-yun (民95),空調系統之化學濾網去除有害氣態污染物性能測試研究,冷凍與空調,頁53-60,2006。.
[19] The National Institute for Occupational Safety and Health, NIOSH.
[20] 奇鼎科技濾網框介紹. from: http://www.chd-tech.com.tw/tw/products/chemical-filter/.
[21] 劉興學,應用化學濾網去除某晶圓廠黃光區潔淨室之氨氣。國立交通大學工學院碩士在職專班產業安全與防災組碩士論文,新竹市,2007.
[22] 劉興學, 應用化學濾網去除某晶圓廠黃光區潔淨室之氨氣, in 工學院碩士在職專班產業安全與防災組. 2007, 國立交通大學: 新竹市. p. 55.
[23] 鄭慶堂,以椰子纖維製備活性碳之研究。國立屏東科技大學環境工程與科學系碩士論文,屏東縣,2005。.
[24] 吳郎嘉,利用活性碳纖維作為焚化廢氣重金屬吸附材料之可行性研究。逢甲大學環境工程與科學所碩士論文,台中市,2002。.
[25] 許峰明,粒狀活性碳及活性碳纖維對氣、液相有機物之吸附、脫附研究。元智大學化學工程研究所碩士論文,桃園縣,1993.
[26] Devic, T., et al., Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host−Guest Interactions. Journal of the American Chemical Society, 2010. 132(3): p. 1127-1136.
[27] Enhanced Gas Separation Prowess Using Functionalized Lignin-Free Lignocellulosic Biomass/Polysulfone Composite Membranes. Membranes, 2021. 11(3): p. 202.
[28] Chen, Y., et al., Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Advances in Colloid and Interface Science, 2011. 163(1): p. 39-52.
[29] Yahya, M.A., Z. Al-Qodah, and C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 2015. 46: p. 218-235.
[30] Aditiya, H.B., et al., Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 2016. 66: p. 631-653.
[31] Sabio, E., et al., Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon, 2004. 42(11): p. 2285-2293.
[32] Yin, C.Y., M.K. Aroua, and W.M.A.W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology, 2007. 52(3): p. 403-415.
[33] JIS B 9901, “Gas-Removal- Method of Test for Performance of Gas-Removal Filters,” JIS 標準,日本規格協會. 1997。.
[34]Wang, Z., et al., Effect of isopropanol on CO2 capture by activated carbon: Adsorption performance and regeneration capacity. Chemical Engineering Research and Design, 2023. 196: p. 632-641.

電子全文 電子全文(網際網路公開日期:20280727)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊