|
1.McNeil SE: Nanotechnology for the biologist. Journal of leukocyte biology 2005, 78(3):585-594. 2.Bhushan B: Introduction to nanotechnology. In: Springer handbook of nanotechnology. Springer; 2017: 1-19. 3.Ealia SAM, Saravanakumar M: A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP conference series: materials science and engineering: 2017. IOP Publishing: 032019. 4.García-Betancourt ML, Jiménez SIR, González-Hodges A, Salazar ZEN, Escalante-García IL, Aparicio JR: Low Dimensional Nanostructures: Measurement and Remediation Technologies Applied to Trace Heavy Metals in Water. In: Trace Metals in the Environment-New Approaches and Recent Advances. IntechOpen; 2020. 5.Roduner E: Size matters: why nanomaterials are different. Chemical society reviews 2006, 35(7):583-592. 6.Yin L, Wang Y, Pang G, Koltypin Y, Gedanken A: Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. Journal of Colloid and Interface Science 2002, 246(1):78-84. 7.Katan C, Mercier N, Even J: Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chemical reviews 2019, 119(5):3140-3192. 8.Kittel C, McEuen P: Introduction to solid state physics: John Wiley & Sons; 2018. 9.Iacovacci V, Lucarini G, Ricotti L, Menciassi A: Magnetic field-based technologies for lab-on-a-chip applications. Lab-on-a-Chip Fabrication and Application 2016:1-56. 10.Schütt W, Grüttner C, Häfeli U, Zborowski M, Teller J, Putzar H, Schümichen C: Applications of magnetic targeting in diagnosis and therapy—possibilities and limitations: a mini-review. Hybridoma 1997, 16(1):109-117. 11.Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic materials 2005, 293(1):483-496. 12.Gilchrist R, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB: Selective inductive heating of lymph nodes. Annals of surgery 1957, 146(4):596. 13.Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C: Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. International Journal of Hyperthermia 2018, 34(8):1316-1328. 14.Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ, Khar RK: Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert opinion on drug delivery 2010, 7(8):927-942. 15.Kamaly N, Yameen B, Wu J, Farokhzad OC: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews 2016, 116(4):2602-2663. 16.Plewes DB, Kucharczyk W: Physics of MRI: a primer. Journal of magnetic resonance imaging 2012, 35(5):1038-1054. 17.Bottomley PA, Hardy C, Argersinger R, Allen‐Moore G: A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Medical physics 1987, 14(1):1-37. 18.Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-C: Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. American Journal of Neuroradiology 2009, 30(1):19-30. 19.Rauscher A, Sedlacik J, Barth M, Mentzel H-J, Reichenbach JR: Magnetic susceptibility-weighted MR phase imaging of the human brain. American journal of neuroradiology 2005, 26(4):736-742. 20.Serai SD: Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatric Radiology 2022, 52(2):217-227. 21.Raymond KN, Pierre VC: Next generation, high relaxivity gadolinium MRI agents. Bioconjugate chemistry 2005, 16(1):3-8. 22.Yan Q, S. Raghuveer M, Li H, Singh B, Kim T, Shima M, Bose A, Ramanath G: Rod‐Shaped Assemblies of FePt‐PtTe2 through Dynamic Templating. Advanced Materials 2007, 19(24):4358-4363. 23.Moghimi N, Leung K: FePt alloy nanoparticles for biosensing: enhancement of vitamin C sensor performance and selectivity by nanoalloying. Analytical chemistry 2013, 85(12):5974-5980. 24.Hu Z, Wei Q, Zhang H, Tang W, Kou Y, Sun Y, Dai Z, Zheng X: Advances in FePt-involved nano-system design and application for bioeffect and biosafety. Journal of Materials Chemistry B 2022, 10(3):339-357. 25.Shi Y, Lin M, Jiang X, Liang S: Recent advances in FePt nanoparticles for biomedicine. Journal of Nanomaterials 2015, 2015:2-2. 26.Platonenko A, Piskunov S, Bocharov D, Zhukovskii YF, Evarestov RA, Bellucci S: First-principles calculations on Fe-Pt nanoclusters of various morphologies. Scientific Reports 2017, 7(1):1-8. 27.Chen Z, Chen B, He M, Hu B: Droplet-splitting microchip online coupled with time-resolved ICPMS for analysis of released Fe and Pt in single cells treated with FePt nanoparticles. Analytical Chemistry 2020, 92(18):12208-12215. 28.Huang J, Jiao L, Xu W, Fang Q, Wang H, Cai X, Yan H, Gu W, Zhu C: Immobilizing enzymes on noble metal hydrogel nanozymes with synergistically enhanced peroxidase activity for ultrasensitive immunoassays by cascade signal amplification. ACS applied materials & interfaces 2021, 13(28):33383-33391. 29.Dong Z, Yang Z, Hao Y, Feng L: Fabrication of H 2 O 2-driven nanoreactors for innovative cancer treatments. Nanoscale 2019, 11(35):16164-16186. 30.Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG: Cancer treatment through nanoparticle-facilitated fenton reaction. Acs Nano 2018, 12(12):11819-11837. 31.Chen W, Yi P, Zhang Y, Zhang L, Deng Z, Zhang Z: Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS applied materials & interfaces 2011, 3(10):4085-4091. 32.Yang MD, Ho CH, Ruta S, Chantrell R, Krycka K, Hovorka O, Chen FR, Lai PS, Lai CH: Magnetic interaction of multifunctional core–shell nanoparticles for highly effective theranostics. Advanced Materials 2018, 30(50):1802444. 33.Slabu I, Wiemer K, Steitz J, Liffmann R, Mues B, Eisold S, Caumanns T, Mayer J, Kuhl CK, Schmitz-Rode T: Size-tailored biocompatible FePt nanoparticles for dual T 1/T 2 magnetic resonance imaging contrast enhancement. Langmuir 2019, 35(32):10424-10434. 34.Chou S-W, Shau Y-H, Wu P-C, Yang Y-S, Shieh D-B, Chen C-C: In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. Journal of the American Chemical Society 2010, 132(38):13270-13278. 35.Jakhmola A, Anton N, Vandamme TF: Inorganic nanoparticles based contrast agents for X‐ray computed tomography. Advanced healthcare materials 2012, 1(4):413-431. 36.Chan ES, Cronstein BN: Mechanisms of action of methotrexate. Bulletin of the NYU Hospital for Joint Diseases 2013, 71(suppl 1):S5. 37.Chan ES, Cronstein BN: Methotrexate—how does it really work? Nature Reviews Rheumatology 2010, 6(3):175-178. 38.Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard J-P: Mechanisms of action of methotrexate. Immunopharmacology 2000, 47(2-3):247-257. 39.Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P: Methotrexate an old drug with new tricks. International journal of molecular sciences 2019, 20(20):5023. 40.Wall ME, Wani MC, Cook Ca, Palmer KH, McPhail Aa, Sim G: Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2. Journal of the American Chemical Society 1966, 88(16):3888-3890. 41.Senter PD, Beam KS, Mixan B, Wahl AF: Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug. Bioconjugate chemistry 2001, 12(6):1074-1080. 42.Lee S-Y, Yang C-Y, Peng C-L, Wei M-F, Chen K-C, Yao C-J, Shieh M-J: A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials 2016, 86:92-105. 43.Kciuk M, Marciniak B, Kontek R: Irinotecan—still an important player in cancer chemotherapy: a comprehensive overview. International journal of molecular sciences 2020, 21(14):4919. 44.Peters GJ: Drug resistance in colorectal cancer: General aspects. In: Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies. Elsevier; 2020: 1-33. 45.Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M: Hyperthermia–description of a method and a review of clinical applications. Reports of Practical Oncology & Radiotherapy 2007, 12(5):267-275. 46.Peiravi M, Eslami H, Ansari M, Zare-Zardini H: Magnetic hyperthermia: Potentials and limitations. Journal of the Indian Chemical Society 2022, 99(1):100269. 47.Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK: Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release 2016, 235:205-221. 48.Yadollahpour A, Hosseini SA, Yadollahpour A: Magnetic nanoparticle based hyperthermia: A review of the physiochemical properties and synthesis methods. Int J Pharm Res Allied Sci 2016, 5:242-246. 49.Herring NP, Panda AB, AbouZeid K, Almahoudi SH, Olson CR, Patel A, El-Shall M: Microwave synthesis of metal oxide nanoparticles. Metal Oxide Nanomaterials for Chemical Sensors 2013:245-284. 50.Kim T, Cho EJ, Chae Y, Kim M, Oh A, Jin J, Lee ES, Baik H, Haam S, Suh JS: Urchin‐shaped manganese oxide nanoparticles as pH‐responsive activatable T1 contrast agents for magnetic resonance imaging. Angewandte Chemie 2011, 123(45):10777-10781. 51.Arvelo F, Sojo F, Cotte C: Biology of colorectal cancer. Ecancermedicalscience 2015, 9. 52.Rocco A, Staibano S, Ottini L, Mezza E, Somma P, Mariani-Costantini R, Budillon G, Nardone G: Is there a link between environmental factors and a genetic predisposition to cancer? A lesson from a familial cluster of gastric cancers. European Journal of cancer 2003, 39(11):1619-1624. 53.Watson AJ, Collins PD: Colon cancer: a civilization disorder. Digestive diseases 2011, 29(2):222-228. 54.Bharadwaj VN, Lifshitz J, Adelson PD, Kodibagkar VD, Stabenfeldt SE: Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size. Scientific reports 2016, 6(1):1-12. 55.Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R: Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 2020, 163:65-83. 56.Dewhirst MW, Viglianti B, Lora-Michiels M, Hanson M, Hoopes P: Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. International journal of hyperthermia 2003, 19(3):267-294.
|