跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠憶
研究生(外文):CHEN,GUAN-YI
論文名稱:合成搭載雙藥物之鐵鉑奈米顆粒應用於癌症治療
論文名稱(外文):Synthesis of FePt Nanoparticles with Dual Drug for Cancer Therapy
指導教授:鍾仁傑鍾仁傑引用關係
指導教授(外文):CHUNG, REN-JEI
口試委員:鍾仁傑曾靖孋吳錫芩
口試委員(外文):CHUNG, REN-JEITSENG, CHING-LIWU, HSI-CHIN
口試日期:2023-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:76
中文關鍵詞:鐵鉑奈米顆粒SN38氨甲蝶呤大腸癌磁熱治療核磁共振造影
外文關鍵詞:Iron-platinum nanoparticleMethotrexateSN38Colorectal cancerMagnetic hyperthermia therapyMagnetic resonance imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據衛生福利部2022年統計十大癌症,大腸癌的罹患、死亡人數每年呈現快速增加的趨勢,目前臨床主要治療方式以手術切除為主,但是手術切除往往也會破壞到正常組織,且癌細胞呈現不規則生長,若缺少標靶性治療,效果十分有限。
本研究結合磁熱治療與化學藥物治療,為癌症治療提供新的選擇。以熱分解法合成鐵鉑奈米顆粒( FePt NPs ),並修飾化療藥物氨甲蝶呤(MTX)與SN38,SN38常用於大腸癌治療,MTX具有靶向癌細胞的能力,將修飾上雙藥物的鐵鉑奈米顆粒注射至癌症部位,並施以高週波交替磁場進行磁熱治療。合成的鐵鉑奈米顆粒經由X光繞射分析儀(XRD)與化學能譜儀分析(XPS)鑑定的結果,確認材料由鐵和鉑所組成。利用穿透式電子顯微鏡(TEM)觀察到材料粒徑約為17.56 ± 2.94 nm。藉由傅立葉轉換紅外線光譜儀分析儀(FT-IR)與紫外-可見光分光光度計(UV-Vis)可以確認兩種藥物均成功搭載於鐵鉑奈米顆粒表面。於超導量子干涉磁量儀(SQUID)分析的結果可以確認材料為超順磁性,可用於磁振造影儀(MRI)的造影劑,且可利用高週波將材料加熱而用於癌症熱療。細胞毒性結果可以觀察到,鐵鉑奈米顆粒在濃度250 μg/mL以下時,均有70%以上的細胞存活率。在磁熱細胞治療的結果可以發現細胞存活率被抑制11.56%。
本研究開發之複合奈米顆粒,結合治療及顯影之功能,為癌症治療提供新的策略。

According to the statistics from the Ministry of Health and Welfare in 2022, colorectal cancer has shown a rapid increase in the number of cases and deaths each year. The incidence and mortality rates of colorectal cancer rank second and third, respectively, among all cancers. Currently, the primary clinical treatment method is surgical resection. However, surgery often damages normal tissues, and cancer cells exhibit irregular growth. Without targeted therapy, the effectiveness is limited.
This study combines magnetic hyperthermia therapy with chemotherapy to provide a new option for cancer treatment. Iron-platinum nanoparticles (FePt NPs) were synthesized thermal decomposition method and modified with chemotherapeutic drugs, methotrexate (MTX), and SN38. SN38 is commonly used in the treatment of colorectal cancer, while MTX has the ability to target cancer cells. The dual-drug-modified FePt nanoparticles were injected into the cancer site and subjected to high-frequency alternating magnetic fields for magnetic hyperthermia therapy. The synthesized FePt nanoparticles were confirmed to be composed of iron and platinum through X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) revealed that the particle size of the material was approximately 17.56 ± 2.94 nm. Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectrophotometry (UV-Vis) confirmed the successful loading of both drugs on the surface of the FePt nanoparticles. The results of the superconducting quantum interference device (SQUID) analysis confirmed the material's superparamagnetic properties, making it suitable for use as a contrast agent in magnetic resonance imaging (MRI) and for heating in cancer thermotherapy using high-frequency fields. The cytotoxicity results showed that the FePt nanoparticles had a cell survival rate of over 70% at concentrations below 250 μg/mL. In the results of magnetic hyperthermia cellular therapy, it was observed that the cell viability was suppressed by 11.56%..
The developed composite nanoparticles in this study, combining therapeutic and imaging functions, provide a new strategy for cancer treatment.

摘要 i
ABSTRACT ii
目錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 奈米科技與技術 3
2.1.1 奈米材料定義 4
2.1.2 奈米顆粒特性及效應 5
2.2 磁性奈米材料 7
2.2.1 磁性基本原理 7
2.2.2 磁滯曲線(Hysteresis Curve) 8
2.2.3 磁性材料分類 9
2.2.4 磁性奈米顆粒於生醫領域上之應用 12
2.3 鐵鉑奈米顆粒之簡介 14
2.4 氨甲蝶呤(Methotrexate) 16
2.5 SN-38(7-乙基-10-羥基喜樹鹼) 17
2.6 磁熱治療(Magnetic thermal therapy) 18
2.7 大腸癌(Colorectal cancer) 20
2.7.1 大腸癌之簡介 20
2.7.2 大腸癌之診斷方法 22
2.7.3 大腸癌之治療方法 24
第三章 材料與方法 25
3.1 實驗藥品 25
3.2 實驗步驟 26
3.2.1 鐵鉑奈米顆粒合成 26
3.2.2 鐵鉑奈米顆粒表面修飾氨基 27
3.2.3 SN38藥物搭載 27
3.2.4 MTX藥物搭載 27
3.3 實驗架構流程圖 28
3.4 實驗分析儀器 29
3.5 儀器原理介紹 30
3.5.1 X光繞射分析儀(XRD) 30
3.5.2 穿透式電子顯微鏡(TEM) 31
3.5.3 傅立葉傳換紅外光光譜儀(FT-IR) 32
3.5.4 紫外-可見光分光光度計(UV-Vis) 33
3.5.5 超導量子干涉磁量儀(SQUID) 34
3.5.6 高週波電感應加熱器(HF-IHM) 35
3.5.7 電腦斷層掃描(CT) 36
3.5.8 磁振造影儀(MRI) 37
3.6 磁熱升溫測試、藥物搭載及藥物釋放 38
3.6.1 磁熱升溫測試 38
3.6.2 藥物搭載測試 39
3.6.3 藥物釋放測試 39
3.7 細胞實驗(In Vitro Test) 40
3.7.1 細胞培養 40
3.7.2 老鼠纖維母細胞(L929)之生物相容性分析 42
3.7.3 人類大腸癌細胞(SW620)之生物相容性分析 44
3.7.4 人類大腸癌細胞(SW620)對奈米顆粒之內吞效果 45
3.7.5 以ICP-OES測量細胞對奈米顆粒攝取 46
3.7.6 磁加熱對人類大腸癌細胞(SW620)影響 47
3.8 動物實驗(In Vivo Test) 48
3.8.1 磁熱治療 48
第四章 結果與討論 49
4.1 材料之特性分析 49
4.1.1 X光繞射分析(XRD) 49
4.1.2 化學能譜儀分析(XPS) 50
4.1.3 穿透式電子顯微鏡分析(TEM) 52
4.1.4 傅立葉轉換紅外線光譜儀分析(FT-IR) 54
4.1.5 紫外-可見分光光度計(UV-Vis) 55
4.1.6 材料之表面電位(Zeta potential)分析 56
4.2 材料之磁性分析、藥物搭載及藥物釋放 57
4.2.1 SQUID量測 57
4.2.2 材料磁加熱實驗(Magnetic Hyperthermia) 59
4.2.3 磁共振成像(MRI) 60
4.2.4 藥物搭載測試 61
4.2.5 藥物釋放測試 62
4.3 細胞實驗結果(In Vitro Test) 63
4.3.1 材料對老鼠纖維母細胞(L929)之生物相容性測試 63
4.3.2 材料對人類大腸癌細胞(SW620)之生物相容性測試 64
4.3.3 人類大腸癌細胞(SW620)對材料之內吞分析 65
4.3.4 材料之細胞攝取 66
4.3.5 材料對人類大腸癌細胞(SW620)之磁熱治療 67
第五章 結論 69
參考文獻 70


1.McNeil SE: Nanotechnology for the biologist. Journal of leukocyte biology 2005, 78(3):585-594.
2.Bhushan B: Introduction to nanotechnology. In: Springer handbook of nanotechnology. Springer; 2017: 1-19.
3.Ealia SAM, Saravanakumar M: A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP conference series: materials science and engineering: 2017. IOP Publishing: 032019.
4.García-Betancourt ML, Jiménez SIR, González-Hodges A, Salazar ZEN, Escalante-García IL, Aparicio JR: Low Dimensional Nanostructures: Measurement and Remediation Technologies Applied to Trace Heavy Metals in Water. In: Trace Metals in the Environment-New Approaches and Recent Advances. IntechOpen; 2020.
5.Roduner E: Size matters: why nanomaterials are different. Chemical society reviews 2006, 35(7):583-592.
6.Yin L, Wang Y, Pang G, Koltypin Y, Gedanken A: Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. Journal of Colloid and Interface Science 2002, 246(1):78-84.
7.Katan C, Mercier N, Even J: Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chemical reviews 2019, 119(5):3140-3192.
8.Kittel C, McEuen P: Introduction to solid state physics: John Wiley & Sons; 2018.
9.Iacovacci V, Lucarini G, Ricotti L, Menciassi A: Magnetic field-based technologies for lab-on-a-chip applications. Lab-on-a-Chip Fabrication and Application 2016:1-56.
10.Schütt W, Grüttner C, Häfeli U, Zborowski M, Teller J, Putzar H, Schümichen C: Applications of magnetic targeting in diagnosis and therapy—possibilities and limitations: a mini-review. Hybridoma 1997, 16(1):109-117.
11.Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic materials 2005, 293(1):483-496.
12.Gilchrist R, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB: Selective inductive heating of lymph nodes. Annals of surgery 1957, 146(4):596.
13.Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C: Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. International Journal of Hyperthermia 2018, 34(8):1316-1328.
14.Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ, Khar RK: Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert opinion on drug delivery 2010, 7(8):927-942.
15.Kamaly N, Yameen B, Wu J, Farokhzad OC: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews 2016, 116(4):2602-2663.
16.Plewes DB, Kucharczyk W: Physics of MRI: a primer. Journal of magnetic resonance imaging 2012, 35(5):1038-1054.
17.Bottomley PA, Hardy C, Argersinger R, Allen‐Moore G: A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Medical physics 1987, 14(1):1-37.
18.Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-C: Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. American Journal of Neuroradiology 2009, 30(1):19-30.
19.Rauscher A, Sedlacik J, Barth M, Mentzel H-J, Reichenbach JR: Magnetic susceptibility-weighted MR phase imaging of the human brain. American journal of neuroradiology 2005, 26(4):736-742.
20.Serai SD: Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatric Radiology 2022, 52(2):217-227.
21.Raymond KN, Pierre VC: Next generation, high relaxivity gadolinium MRI agents. Bioconjugate chemistry 2005, 16(1):3-8.
22.Yan Q, S. Raghuveer M, Li H, Singh B, Kim T, Shima M, Bose A, Ramanath G: Rod‐Shaped Assemblies of FePt‐PtTe2 through Dynamic Templating. Advanced Materials 2007, 19(24):4358-4363.
23.Moghimi N, Leung K: FePt alloy nanoparticles for biosensing: enhancement of vitamin C sensor performance and selectivity by nanoalloying. Analytical chemistry 2013, 85(12):5974-5980.
24.Hu Z, Wei Q, Zhang H, Tang W, Kou Y, Sun Y, Dai Z, Zheng X: Advances in FePt-involved nano-system design and application for bioeffect and biosafety. Journal of Materials Chemistry B 2022, 10(3):339-357.
25.Shi Y, Lin M, Jiang X, Liang S: Recent advances in FePt nanoparticles for biomedicine. Journal of Nanomaterials 2015, 2015:2-2.
26.Platonenko A, Piskunov S, Bocharov D, Zhukovskii YF, Evarestov RA, Bellucci S: First-principles calculations on Fe-Pt nanoclusters of various morphologies. Scientific Reports 2017, 7(1):1-8.
27.Chen Z, Chen B, He M, Hu B: Droplet-splitting microchip online coupled with time-resolved ICPMS for analysis of released Fe and Pt in single cells treated with FePt nanoparticles. Analytical Chemistry 2020, 92(18):12208-12215.
28.Huang J, Jiao L, Xu W, Fang Q, Wang H, Cai X, Yan H, Gu W, Zhu C: Immobilizing enzymes on noble metal hydrogel nanozymes with synergistically enhanced peroxidase activity for ultrasensitive immunoassays by cascade signal amplification. ACS applied materials & interfaces 2021, 13(28):33383-33391.
29.Dong Z, Yang Z, Hao Y, Feng L: Fabrication of H 2 O 2-driven nanoreactors for innovative cancer treatments. Nanoscale 2019, 11(35):16164-16186.
30.Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG: Cancer treatment through nanoparticle-facilitated fenton reaction. Acs Nano 2018, 12(12):11819-11837.
31.Chen W, Yi P, Zhang Y, Zhang L, Deng Z, Zhang Z: Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS applied materials & interfaces 2011, 3(10):4085-4091.
32.Yang MD, Ho CH, Ruta S, Chantrell R, Krycka K, Hovorka O, Chen FR, Lai PS, Lai CH: Magnetic interaction of multifunctional core–shell nanoparticles for highly effective theranostics. Advanced Materials 2018, 30(50):1802444.
33.Slabu I, Wiemer K, Steitz J, Liffmann R, Mues B, Eisold S, Caumanns T, Mayer J, Kuhl CK, Schmitz-Rode T: Size-tailored biocompatible FePt nanoparticles for dual T 1/T 2 magnetic resonance imaging contrast enhancement. Langmuir 2019, 35(32):10424-10434.
34.Chou S-W, Shau Y-H, Wu P-C, Yang Y-S, Shieh D-B, Chen C-C: In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. Journal of the American Chemical Society 2010, 132(38):13270-13278.
35.Jakhmola A, Anton N, Vandamme TF: Inorganic nanoparticles based contrast agents for X‐ray computed tomography. Advanced healthcare materials 2012, 1(4):413-431.
36.Chan ES, Cronstein BN: Mechanisms of action of methotrexate. Bulletin of the NYU Hospital for Joint Diseases 2013, 71(suppl 1):S5.
37.Chan ES, Cronstein BN: Methotrexate—how does it really work? Nature Reviews Rheumatology 2010, 6(3):175-178.
38.Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard J-P: Mechanisms of action of methotrexate. Immunopharmacology 2000, 47(2-3):247-257.
39.Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P: Methotrexate an old drug with new tricks. International journal of molecular sciences 2019, 20(20):5023.
40.Wall ME, Wani MC, Cook Ca, Palmer KH, McPhail Aa, Sim G: Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2. Journal of the American Chemical Society 1966, 88(16):3888-3890.
41.Senter PD, Beam KS, Mixan B, Wahl AF: Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug. Bioconjugate chemistry 2001, 12(6):1074-1080.
42.Lee S-Y, Yang C-Y, Peng C-L, Wei M-F, Chen K-C, Yao C-J, Shieh M-J: A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials 2016, 86:92-105.
43.Kciuk M, Marciniak B, Kontek R: Irinotecan—still an important player in cancer chemotherapy: a comprehensive overview. International journal of molecular sciences 2020, 21(14):4919.
44.Peters GJ: Drug resistance in colorectal cancer: General aspects. In: Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies. Elsevier; 2020: 1-33.
45.Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M: Hyperthermia–description of a method and a review of clinical applications. Reports of Practical Oncology & Radiotherapy 2007, 12(5):267-275.
46.Peiravi M, Eslami H, Ansari M, Zare-Zardini H: Magnetic hyperthermia: Potentials and limitations. Journal of the Indian Chemical Society 2022, 99(1):100269.
47.Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK: Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release 2016, 235:205-221.
48.Yadollahpour A, Hosseini SA, Yadollahpour A: Magnetic nanoparticle based hyperthermia: A review of the physiochemical properties and synthesis methods. Int J Pharm Res Allied Sci 2016, 5:242-246.
49.Herring NP, Panda AB, AbouZeid K, Almahoudi SH, Olson CR, Patel A, El-Shall M: Microwave synthesis of metal oxide nanoparticles. Metal Oxide Nanomaterials for Chemical Sensors 2013:245-284.
50.Kim T, Cho EJ, Chae Y, Kim M, Oh A, Jin J, Lee ES, Baik H, Haam S, Suh JS: Urchin‐shaped manganese oxide nanoparticles as pH‐responsive activatable T1 contrast agents for magnetic resonance imaging. Angewandte Chemie 2011, 123(45):10777-10781.
51.Arvelo F, Sojo F, Cotte C: Biology of colorectal cancer. Ecancermedicalscience 2015, 9.
52.Rocco A, Staibano S, Ottini L, Mezza E, Somma P, Mariani-Costantini R, Budillon G, Nardone G: Is there a link between environmental factors and a genetic predisposition to cancer? A lesson from a familial cluster of gastric cancers. European Journal of cancer 2003, 39(11):1619-1624.
53.Watson AJ, Collins PD: Colon cancer: a civilization disorder. Digestive diseases 2011, 29(2):222-228.
54.Bharadwaj VN, Lifshitz J, Adelson PD, Kodibagkar VD, Stabenfeldt SE: Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size. Scientific reports 2016, 6(1):1-12.
55.Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R: Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 2020, 163:65-83.
56.Dewhirst MW, Viglianti B, Lora-Michiels M, Hanson M, Hoopes P: Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. International journal of hyperthermia 2003, 19(3):267-294.


電子全文 電子全文(網際網路公開日期:20270913)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊