跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 08:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施弘益
研究生(外文):Hung-Yi Shih
論文名稱:二氧化矽/碳奈米複合材料應用於電容去離子技術
論文名稱(外文):Application of silica/carbon nanocomposites in capacitive deionization technology
指導教授:林正嵐
指導教授(外文):Cheng-Lan Lin
口試委員:陳志賢彭晴玉
口試委員(外文):Chih-Hsien ChenChing-Yu Peng
口試日期:2023-07-07
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:56
中文關鍵詞:電容去離子二氧化矽活性碳Sol/gel合成
外文關鍵詞:Capacitive deionizationsilica dioxideactivated carbonsol/gel method
DOI:10.6846/tku202300542
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
電容去離子技術(Capacitive Deionization, CDI)是一種低耗能、低成本的脫鹽技術,通過在具有高比電容值的電極上施加電位差,從水溶液中去除離子。本研究使用溶膠/凝膠法製備二氧化矽(Silica, SiO2)顆粒,並在其表面包覆碳殼,將其與活性碳(Activated Carbon, AC)混合成為不同SiO2@C/AC比例的複合材料電極,並與一般活性碳進行比較,應用於電容去離子技術中,以找出最佳的SiO2@C/AC比例。
研究結果顯示,在不同重量百分比的SiO2@C/AC複合材料中,SiO2@C的比表面積較一般活性碳小。電化學分析顯示,SiO2@C的比例與電化學阻抗呈正相關,而與比電容呈負相關,這導致電吸附量的下降。因此,需要進行電容去離子實驗,以找出最佳的SiO2@C/AC重量百分比。
在比較活性碳和不同重量百分比的SiO2@C/AC複合材料的電容去離子性能時,發現當複合材料的組成為Si10AC90時,其具有最大的鈉離子吸附量(3.4 mg/g)和最大的氯離子吸附量(5.1 mg/g)。然而,當SiO2@C的比例繼續增加時,去除效率和電吸附量急劇下降,這表明SiO2@C/AC在特定比例下具有最佳的結合效果。
Capacitive Deionization (CDI) is a low-energy and cost-effective desalination technique that removes ions from water solutions by applying a potential difference across electrodes with high specific capacitance. In this study, silica (SiO2) particles were prepared using the sol-gel method and coated with a carbon shell. These particles were then mixed with activated carbon (AC) to create composite electrodes with varying SiO2@C/AC ratios, which were compared to regular activated carbon. These electrodes were applied in capacitive deionization technology to determine the optimal SiO2@C/AC ratio.
The results showed that the specific surface area of SiO2@C was lower than that of regular activated carbon in the composite materials with different weight percentages. Electrochemical analysis revealed a positive correlation between the SiO2@C ratio and electrochemical impedance, while a negative correlation was observed with specific capacitance, leading to a decrease in ion adsorption capacity. Therefore, capacitive deionization experiments were conducted to identify the optimal SiO2@C/AC weight percentage.
When comparing the capacitive deionization performance of activated carbon and composite materials with different weight percentages of SiO2@C/AC, it was found that the composition of Si10AC90 exhibited the highest sodium ion adsorption capacity (3.4 mg/g) and chloride ion adsorption capacity (5.1 mg/g). However, as the SiO2@C ratio continued to increase, the removal efficiency and ion adsorption capacity sharply declined, indicating that SiO2@C/AC had an optimal binding effect at a specific ratio.
目錄
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
第二章 文獻回顧 3
2.1 電容去離子技術 3
2.1.1 電容去離子發展歷史 3
2.1.2 電容去離子原理 4
2.2 電極材料 4
2.2.1 活性碳 5
2.2.2 碳殼層包覆二氧化矽 6
2.3 溶膠/凝膠法 7
第三章 研究材料與方法 8
3.1 實驗架構 8
3.2 實驗藥品與設備 10
3.2.1 實驗藥品 10
3.2.2 實驗設備 11
3.3 電極材料製備 12
3.3.1 活性碳預處理 12
3.3.2 二氧化矽奈米顆粒製備 12
3.3.3 碳殼層包覆二氧化矽奈米顆粒製備 12
3.4 電容去離子系統電極製備 13
3.5 實驗分析方法 14
3.5.1 掃描式電子顯微鏡分析(SEM) 14
3.5.2 能量散射X射線譜分析(EDX) 14
3.5.3 比表面積及孔徑分析(BET) 15
3.5.4 水接觸角測試儀(CA) 16
3.5.5 循環伏安法(CV) 17
3.5.6 電化學阻抗譜分析(EIS) 18
3.5.7 離子層析儀(IC) 18
3.5.8 感應耦合電漿原子發射光譜儀(ICP-OES) 19
3.6 電容去離子實驗(CDI) 19
第四章 結果與討論 21
4.1 電極材料表面特性分析 21
4.1.1 SEM 21
4.1.2 BET 23
4.1.3 水接觸角 27
4.2 電極材料電化學特性分析 28
4.2.1 循環伏安法 28
4.2.2 電化學阻抗譜 30
4.3 碳殼層包覆二氧化矽應用於電容去離子技術 31
4.3.1 導電度及去除率 32
4.3.2 陽離子吸附量 37
4.3.3 陰離子吸附量 43
4.4 綜合實驗討論 48
第五章 結論與建議 50
第六章 參考文獻 52
第七章 附錄 56

圖目錄
圖 2.1.2.1電雙層原理示意圖 4
圖 3.3.3.1 CDI電極示意圖 13
圖 3.3.3.2 CDI模組示意圖 13
圖 3.5.3.1 常見六種BET氣體吸脫附曲線圖[30] 16
圖 4.1.1.1 SiO2@C放大(a)1000倍、(b)10000倍、(c)30000倍、(d)100000倍的SEM影像 21
圖 4.1.1.2 SiO2@C EDX影像 22
圖 4.1.2.1AC與SiO2@C的氮氣吸脫附曲線圖 25
圖 4.1.2.2 AC與SiO2@C的孔體積與孔徑關係圖 27
圖 4.1.3.1 AC與SiO2@C的水接觸角影像 28
圖 4.2.1.1不同比例的SiO2@C/AC複合材料和一般AC電極的CV曲線 29
圖 4.2.1.2不同比例的SiO2@C/AC複合材料和一般AC電極的比電容 30
圖 4.2.2.1 AC、SiO2@C與不同比例之SiO2@C/AC電極的Nyquist圖 31
圖 4.3.1.1 不同比例的SiO2@C/AC複合材料和一般AC電極單次循環60分鐘的導電度變化 33
圖 4.3.1.2 不同比例的SiO2@C/AC複合材料和一般AC電極單次循環30分鐘的導電度變化 35
圖 4.3.1.3 不同比例非對稱的SiO2@C/AC複合材料和一般AC電極單次循環30分鐘的導電度變化 36
圖 4.3.2.1 一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單次循環60分鐘的CDI實驗鈉離子濃度趨勢圖 39
圖 4.3.2.2 一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單次循環30分鐘的CDI實驗鈉離子濃度趨勢圖 41
圖 4.3.2.3 一般AC及非對稱不同重量百分比的SiO2@C/AC複合材料電極之單次循環30分鐘的CDI實驗鈉離子濃度趨勢圖 42
圖 4.3.3.1一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單次循環60分鐘的CDI實驗氯離子濃度趨勢圖 44
圖 4.3.3.2 一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單次循環30分鐘的CDI實驗氯離子濃度趨勢圖 46
圖 4.3.3.3 一般AC及非對稱不同重量百分比的SiO2@C/AC複合材料電極之單次循環30分鐘的CDI實驗氯離子濃度趨勢圖 47
圖 4.3.3.1對稱式一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單位吸附量比較 49
圖 4.3.3.2非對稱式一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單位吸附量比較 49

表目錄
表 4.1.1.1 EDX元素分析表 22
表 4.1.2.1 AC與SiO2@C的比表面積與孔徑特性 24
表 4.2.1.1不同比例的SiO2@C/AC複合材料和一般AC電極的比電容 29
表 4.3.1.1 不同比例的SiO2@C/AC複合材料和一般AC電極單次循環60分鐘的導電度去除率 34
表 4.3.1.2 不同比例的SiO2@C/AC複合材料和一般AC電極單次循環30分鐘的導電度去除率 37
表 4.3.1.3 不同比例非對稱的SiO2@C/AC複合材料和一般AC電極單次循環30分鐘的導電度去除率 37
表 4.3.2.1 一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單次循環60分鐘CDI實驗的鈉離子電吸附容量 39
表 4.3.2.2 一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單次循環30分鐘的鈉離子電吸附容量 41
表 4.3.2.3 一般AC及非對稱不同重量百分比的SiO2@C/AC複合材料電極之單次循環30分鐘的鈉離子電吸附容量 42
表 4.3.3.1 一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單次循環60分鐘CDI實驗的氯離子電吸附容量 44
表 4.3.3.2 一般AC及不同重量百分比的SiO2@C/AC複合材料電極之單次循環30分鐘CDI實驗的氯離子電吸附容量 46
表 4.3.3.3 一般AC及非對稱不同重量百分比的SiO2@C/AC複合材料電極之單次循環30分鐘CDI實驗的氯離子電吸附容量 47
[1]M. A. Anderson, A. L. Cudero, and J. Palma, "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?," Electrochimica Acta, vol. 55, no. 12, pp. 3845-3856, 2010.
[2]S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization," Progress in materials science, vol. 58, no. 8, pp. 1388-1442, 2013.
[3]J. W. Blair and G. W. Murphy, "Electrochemical demineralization of water with porous electrodes of large surface area," ACS Publications, 1960.
[4]A. M. Johnson and W. VENOLIA, "The electrosorb process for desalting water," 1970.
[5]A. M. Johnson and J. Newman, "Desalting by means of porous carbon electrodes," Journal of the electrochemical society, vol. 118, no. 3, p. 510, 1971.
[6]Y. Oren and A. Soffer, "Electrochemical parametric pumping," Journal of the Electrochemical Society, vol. 125, no. 6, p. 869, 1978.
[7]A. Soffer and M. Folman, "The electrical double layer of high surface porous carbon electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 38, no. 1, pp. 25-43, 1972.
[8]Y. Oren and A. Soffer, "Water desalting by means of electrochemical parametric pumping: I. The equilibrium properties of a batch unit cell," Journal of Applied Electrochemistry, vol. 13, no. 4, pp. 473-487, 1983.
[9]Y. Oren and A. Soffer, "Water desalting by means of electrochemical parametric pumping. II. Separation properties of a multistage column," Journal of Applied Electrochemistry, vol. 13, no. 4, pp. 489-505, 1983.
[10]Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review)," Desalination, vol. 228, no. 1-3, pp. 10-29, 2008.
[11]E. Avraham, M. Noked, Y. Bouhadana, A. Soffer, and D. Aurbach, "Limitations of charge efficiency in capacitive deionization: II. On the behavior of CDI cells comprising two activated carbon electrodes," Journal of the Electrochemical Society, vol. 156, no. 10, p. P157, 2009.
[12]J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, "The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water," Lawrence Livermore National Lab., 1995.
[13]J. Rouquerol et al., "Recommendations for the characterization of porous solids (Technical Report)," Pure and applied chemistry, vol. 66, no. 8, pp. 1739-1758, 1994.
[14]K. S. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)," Pure and applied chemistry, vol. 57, no. 4, pp. 603-619, 1985.
[15]L. Zou, L. Li, H. Song, and G. Morris, "Using mesoporous carbon electrodes for brackish water desalination," Water research, vol. 42, no. 8-9, pp. 2340-2348, 2008.
[16]J. Oladunni, J. H. Zain, A. Hai, F. Banat, G. Bharath, and E. Alhseinat, "A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: from theory to practice," Separation and Purification Technology, vol. 207, pp. 291-320, 2018.
[17]M. E. Suss et al., "Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity," Journal of power sources, vol. 241, pp. 266-273, 2013.
[18]S. Porada et al., "Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization," Energy & Environmental Science, vol. 6, no. 12, pp. 3700-3712, 2013.
[19]I. A. Rahman and V. Padavettan, "Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review," Journal of nanomaterials, vol. 2012, pp. 8-8, 2012.
[20]J. C. Ro and J. C. In, "Structures and properties of silica gels prepared by the sol—gel method," Journal of non-crystalline solids, vol. 130, no. 1, pp. 8-17, 1991.
[21]H. Azlina, J. Hasnidawani, H. Norita, and S. Surip, "Synthesis of SiO₂ Nanostructures Using Sol-Gel Method," Acta Physica Polonica A, vol. 129, no. 4, pp. 842-844, 2016.
[22]S. Wang et al., "In situ formation of prussian blue analogue nanoparticles decorated with three-dimensional carbon nanosheet networks for superior hybrid capacitive deionization performance," ACS Applied Materials & Interfaces, vol. 12, no. 39, pp. 44049-44057, 2020.
[23]J. Cui et al., "High surface area C/SiO2 composites from rice husks as a high-performance anode for lithium ion batteries," Powder Technology, vol. 311, pp. 1-8, 2017.
[24]S. Li, Y. Zhang, S. Lin, J. Yan, and S. Du, "Effects of nano-SiO2 coated multi-walled carbon nanotubes on mechanical properties of cement-based composites," Construction and Building Materials, vol. 281, p. 122577, 2021.
[25]W.-T. Chen, R. Muruganantham, and W.-R. Liu, "Construction of 3D porous graphene aerogel wrapped silicon composite as anode materials for high-efficient lithium-ion storage," Surface and Coatings Technology, vol. 434, p. 128147, 2022.
[26]C.-C. Hsieh, Y.-G. Lin, C.-L. Chiang, and W.-R. Liu, "Carbon-coated porous Si/C composite anode materials via two-step etching/coating processes for lithium-ion batteries," Ceramics International, vol. 46, no. 17, pp. 26598-26607, 2020.
[27]C.-M. Yang, W.-H. Choi, B.-K. Na, B. W. Cho, and W. I. Cho, "Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes," Desalination, vol. 174, no. 2, pp. 125-133, 2005.
[28]G. Quan, H. Wang, F. Zhu, and J. Yan, "Porous biomass carbon coated with SiO2 as high performance electrodes for capacitive deionization," BioResources, vol. 13, no. 1, pp. 437-449, 2018.
[29]Y. Wan, Y.-L. Min, and S.-H. Yu, "Synthesis of Silica/Carbon-Encapsulated Core− Shell Spheres: Templates for Other Unique Core− Shell Structures and Applications in in Situ Loading of Noble-Metal Nanoparticles," Langmuir, vol. 24, no. 9, pp. 5024-5028, 2008.
[30]K. V. Kumar et al., "Characterization of the adsorption site energies and heterogeneous surfaces of porous materials," Journal of materials chemistry A, vol. 7, no. 17, pp. 10104-10137, 2019.
[31]P. Xu, H. Wang, R. Tong, Q. Du, and W. Zhong, "Preparation and morphology of SiO 2/PMMA nanohybrids by microemulsion polymerization," Colloid and polymer science, vol. 284, pp. 755-762, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊