跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱忻
研究生(外文):Yu-Hsin Chen
論文名稱:航機因臨時性狀況停飛之恢復性航機指派最佳化網路模式之研究
論文名稱(外文):An Optimization Network Model of Recovery Tail Assignment Following Temporary Aircraft Grounded
指導教授:陳俊穎陳俊穎引用關係
指導教授(外文):Chun-Ying Chen
口試委員:吳沛儒林振榮
口試委員(外文):Pei-Ju WuJenn-Rong Lin
口試日期:2023-01-05
學位類別:碩士
校院名稱:淡江大學
系所名稱:運輸管理學系運輸科學碩士班
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:80
中文關鍵詞:航機指派臨時性指派流動網路技巧數學規劃
外文關鍵詞:tail assignmenttemporarily assignmentnetwork flow techniquesmathematical planning methods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
近年來,受國際航空旅運人次增加影響,國內外航空公司接逐步擴
大公司的機隊規模以因應龐大的旅運需求。過往在關於組員、航機、維
修之排班指派已有許多文獻進行研究,但在臨時事件下之指 派則鮮有
文獻進行探討。隨著航空公司機隊日益擴張,如何有效運用航機已成為
重要探討議題,更尤其在遭遇臨時事件而導致原本規畫中斷時,航空公
司管理單位該如何利用現有資源快速調整。
因此本研究以系統最佳化之觀點,在所有勤務皆有被服務情況下,
以班次最小變動率為目標,考量航機機型、勤務接續性以及航機維修限
制條,利用流動網路技巧和數學規劃方法,建構出最佳化之航機臨 時
性指派模式。最後本研究利用不同情境之案例資料進行各型號航機停
飛、延誤時數增加、增加門檻值以及減少懲罰值等敏感度分析,最終測
試可知本研究模式求解結果具正確性且合理性,期望本研究之結果可供
未來學術重要文獻,也可改善作業面之規畫結果。
In recent years, affected by the increase in the number of international
travelers, domestic and foreign airlines have gradually expanded the size
of their company's fleet to meet the huge travel demand. In the past, there
has been much literatures on scheduling of crew members, aircrafts, and
maintenance, but there are few literatures on the assignment in temporarily
events. As airline fleets expand, how to use aircrafts effectively has become
an important topic of discussion, especially in the event of temporary events
that lead to the interruption of original planning, how airline management
can use existing resources to quickly adjust.
Therefore, from the perspective of system optimization, this study aims
at the minimum schedule change rate of the aircrafts in the case of all
services being served, considers the aircraft type, service continuity and
aircraft maintenance restrictions, and uses mobile network skills and
mathematical planning methods to construct an optimized temporary aircraft
assignment model. Finally, this study uses case data from different scenarios
for testing, and preliminary tests show that the solution results of this
research model are correct and reasonable.
目 錄
目 錄............................................................................. I
圖目錄...........................................................................III
表目錄.............................................................................V
第一章 緒論........................................................................1
1.1 研究背景與研究動機..............................................................1
1.2 研究目的.......................................................................3
1.3 現況分析與研究範圍..............................................................4
1.4 研究流程.......................................................................9
第二章 文獻回顧....................................................................11
2.1 航機指派文獻...................................................................11
2.2 恢復性航機指派文獻..............................................................13
2.3 小結..........................................................................15
第三章 研究模式....................................................................16
3.1 小結..........................................................................16
3.2 網路架構......................................................................18
3.2.1 研究背景....................................................................18
3.2.2 數學限制式..................................................................21
第四章 研究模式....................................................................24
4.1 網路架構......................................................................24
II
4.1.1 模式測試 1..................................................................24
4.1.2 案例測試 2..................................................................29
4.1.3 案例測試 3..................................................................32
4.1.4 測試小節....................................................................35
4.2 案例分析......................................................................36
4.2.1 各型號航機停飛結果...........................................................36
4.2.2 延誤方案增減測試.............................................................38
4.2.2 門檻值增加測試...............................................................52
4.2.3 不同懲罰值測試...............................................................54
4.3 測試小節.......................................................................54
第五章 結論與建議...................................................................56
5.1 結論...........................................................................56
5.2 建議...........................................................................57
5.3 貢獻...........................................................................58
參考文獻...........................................................................60
附錄...............................................................................64
附錄一 測試航班資料.................................................................64
附錄二 測試 1 航機資料..............................................................64
附錄三 測試 2 航機資料..............................................................64
附錄四 測試 3 航機資料..............................................................65
附錄五 案例航班資料(原有延誤方案)....................................................65
III
圖目錄
圖 1.1 航空公司確定性班表規劃流程.....................................................5
圖 1.2 航空公司及時性班表規劃流程.....................................................6
圖 1.3 航空公司航機規劃流程...........................................................7
圖 1.4 本研究流程...................................................................10
圖 3.1 航機指派網路圖...............................................................21
圖 4.1 航機 1 網路指派圖............................................................25
圖 4.2 航機 2 網路指派圖............................................................25
圖 4.3 航機 1 求解後最佳規劃.........................................................28
圖 4.4 航機 2 求解後最佳規劃.........................................................29
圖 4.5 航機 1 網路指派圖............................................................30
圖 4.6 航機 2 網路指派圖............................................................30
圖 4.7 航機 1 求解後最佳規劃.........................................................32
圖 4.9 航機 1 網路指派圖............................................................33
圖 4.10 航機 2 網路指派圖...........................................................33
圖 4.11 航機 1 求解後最佳規劃.......................................................35
圖 4.12 航機 2 求解後最佳規劃........................................................35
圖 4.12 缺少航機型號 1 之目標值趨勢..................................................40
圖 4.13 缺少航機型號 1 之延誤分鐘數趨勢..............................................41
圖 4.14 缺少航機型號 1 之無法服務勤務之數量趨勢.......................................41
IV
1. Babar, A., Kamal, k., Usman, M., Zehra, M.(2019), “Optimization of Aircraft
Maintenance Routing Using Uninformed and Informed Search Algorithms,”
International Journal of Mechanical Engineering and Robotics Research, Vol.
8,No.1,pp. 141-145. doi: 10.18178/ijmerr.8.1.141-145
2. Bulbul, K., Kasimbeyli, R.(2021), “Augmented Lagrangian based hybrid
subgradient method for solving aircraft maintenance routing problem,”Computers
& Operations Research,Vol.133, pp. 187-203. doi: 10.1016/j.cor.2021.105294
3. Deldago, F., Mora, J.(2021), “A matheuristic approach to the air-cargo recovery
problem under demand disruption,” Journal of Air Transport Management, Vol.
90. doi:10.1016/j.jairtraman.2020.101939
4. Froyland, G., Maher, S. J., Wu, C. L. (2014), “The recoverable robust tail
assignment problem,” Transportation Science, Vol. 48, No.3,pp. 351-372.
doi:10.1287/trsc.2013.0463
5. Fuentes, M., Cadarso, L., Vaze, V., Barnhart, C.(2020), “The Tail Assignment
Problem: A Case Study at Vueling Airlines” Transportation Research Procedia,
Vol. 52, pp. 445-452. doi:10.1016/j.trpro.2021.01.052
6. Hu, Y., Liao, H., Zhang, S., Song, Y.(2017), “Multiple objective solution
approaches for aircraft rerouting under the disruption of multi-aircraft” Expert
Systems With Applications, Vol. 83, pp 283-299. doi: 10.1016/j.eswa.2017.04.031
7. Kena, N., Jebali, A., Diabat, A.(2018), “An integrated flight scheduling and fleet
assignment problem under uncertainty,”Computers & Operations Research,
Vol.100, pp. 333-342. doi:10.1016/j.cor.2017.08.014
8. Khaled, O., Minoux, M., Mousseau, V., Michel, S., Ceugniet, X. (2017), “A
compact optimization model for the tail assignment problem,”European Journal of
Operational Research, Vol. 264, pp. 548-557. doi: 10.1016/j.ejor.2017.06.045
9. Khaled, O., Minoux, M., Mouseeeau, V., Michel, S., Geugniet, X.(2018), “A
multi-criteria repair/recovery framework for the tail assignment problem in
airlines,” Journal of Air Transport Management, Vol. 68,No.0 ,pp 137-151. doi:
10.1016/j.jairtraman.2017.10.002
10. Li, Y., Tan, N.(2013), “Study on Fleet Assignment Problem Model and Algorithm,”
Mathematical Problems in Engineering, Vol. 2013, pp. 1-5.
doi:10.1155/2013/581586
11. Linder, M., Fricke, H.(2020), “Examination and Application of Aircraft Reliability
in Flight Scheduling and Assignment,”Operations Research Proceedings, pp. 447-
543. doi:10.1007/978-3-030-48439-2_54
12. Maher, S., Desaulniers,c., Soumis, F. (2018), “The daily tail assignment problem
under operational uncertainty using look-ahead maintenance constraints,” Science
Direct, Vol. 264,pp. 534-547. doi:10.1016/j.ejor.2017.06.041
13. Martins, L., Rocha, A., Castro, A. (2021), “A QUBO Model to the Tail
Assignment Problem,” Proceedings of the 13th International Conference on
Agents and Artificial Intelligence, Vol. 2, pp. 899-609. doi:
10.5220/0010259608990906
14. Ruther, S., Boland, N., Engineer, F., Evans, I.(2017), “Integrated Aircraft Routing,
Crew Pairing, and Tail Assignment : Branch-and-Price with Many Pricing
Problems,” Transportation Science, Vol. 51, No.1, pp. 177-195. doi:
10.1287/trsc.2015.0664
15. Sanchez, D., Boyaci, B., Zgrafos, G.(2020), “An optimisation framework for
airline fleet maintenance scheduling with tail assignment considerations,”
Transportation Research Part B Methodological, Vol.133, No.0,pp. 142-164,
doi:10.1016/j.trb.2019.12.008
16. Sousa,H., Teixeira, R., Cardoso, H., Oliveira, E.(2015), “Airline Disruption
Management: Dynamic Aircraft Scheduling with Ant Colony Optimization,”
International Conference on Agents and Artificial Intelligence,pp. 398-405.
doi:10.5220/0005205303980405
17. Wu, Z., Li, B., Dang, C.,(2017), “Solving Multiple Fleet Airline Disruption
Problems Using a Distributed-Computation Approach to Integer
Programming,”IEEE Access, Vol. 5,pp. 19116-19131. doi:
10.1109/ACCESS.2017.2747155
18. Wang, Z., Wang, F., Hei, X., Meng, H. (2018), “The Model of Flight Recovery
Problem with Decision Factors and Its Optimization,”International Conference on
Intelligent Computing,pp. 679-690.
19. Xu, Y., Wandelt, S., Sun, X.(2019), “Stochastic Tail Assignment under Recovery,”
Thirteenth USA/Europe Air Traffic Management Research and Development
Seminar.
20. Yetimoglu, Y., Akturk, M.(2021), “AIRCRAFT AND PASSENGER
RECOVERY DURING AN AIRCRAFT’S UNEXPECTED
UNAVAILABILITY”Journal of Air Transport Management, Vol. 91, No.0. doi:
10.1016/j.jairtraman.2020.101991
21. Zhang, C. (2017), “Two-stage heuristic algorithm for aircraft recovery problem,”
Discrete Dynamics in Nature and Society, Vol. 87,pp. 436-453. doi:
10.1155/2017/9575719
22. Statista(2021), Number of scheduled passengers boarded by the global airline
industry from 2004 to 2022. Retrieved from:
https://www.statista.com/statistics/564717/airline-industry-passenger-trafficglobally/
23. 國際航空運輸協會(2020),2019 年全球航空客運需求緩慢增長,國際航空運
輸協會。檢自
https://www.iata.org/contentassets/12851812b6e6455eb8363726eb326fef/2020-
02-06-01-cn.pdf
24. 桃園國際機場股份有限公司(2021),年度客運量,中華民國交通部民用航空
局。檢自 https://www.taoyuanairport.com.tw/passengervolume
25. 顏上堯 (1994),「班次表擾動下飛航排程策略 - 利用動態網路流動技巧」,
行政院國家科學委員會(編號: NSC83-0410-E008-064)。檢自
https://www.grb.gov.tw/search/planDetail?id=126184
26. 王思文 (2006),「因應多機場暫時性關閉之飛航排成方法」,國立交通大學
運輸科技與管理學系碩士班論文。
27. 紀清耀 (2008),「快遞運務員作業排程規劃及及時調整之研究」,國立中央
大學土木工程學系碩士班論文。
28. 顏上堯, 郭俊志, 蕭妃晏 (2012),「航機維護工廠年度排程調整最佳化模式
之研究」,運輸計畫季刊,41(3),331-344。
29. 顏上堯 (2018),「因應颱風擾動事件飛航排程調整規劃之研究」,科技部補
助專題研究計畫成果報告期末報告(編號: MOST 104-2221-E-008-031-MY3),
未出版。檢自
http://grbsearch.stpi.narl.org.tw/search/planDetail?docId=0&id=11577385&plan
_no=MOST104-2221-E008-031-MY3&plan_year=104&target=plan
30. 陳俊穎 (2020),「最佳化航機指派網路模式之研究」,109 年中華民國運輸
學會。台南市。
31. 陳俊穎等人 (2021),「考量航機檢修下航機指派最佳化網路模式之研究」,
110 年中華民國運輸學會。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top