跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭瑞季
研究生(外文):KUO, JUI-CHI
論文名稱:應用金奈米島狀薄膜於熱莫爾氏菌之醋酸生產
論文名稱(外文):Application of Gold Nano-Island Film in Moorella thermoacetica for Acetic Acid Production
指導教授:郭聰榮陳志華陳志華引用關係
指導教授(外文):KUO, TSUNG-RONGCHEN, CHIH-HWA
口試委員:楊正昌鄭財木莊爾元郭聰榮陳志華
口試委員(外文):YANG, JEN-CHANGCHENG, TSAI-MUCHUANG, ER-YUANKUO, TSUNG-RONGCHEN, CHIH-HWA
口試日期:2023-05-29
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:奈米醫學工程研究所碩士班
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:35
中文關鍵詞:金奈米島狀薄膜熱莫爾氏菌人工光合作用光合生物混合系統二氧化碳固定作用
外文關鍵詞:Gold nano-island filmMoorella thermoaceticaArtificial photosynthesisPhotosynthetic biohybrid systemsCarbon dioxide fixation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
能源消耗和溫室效應是近年來日益嚴重的議題,化石燃料產生大量溫室氣體,加速全球暖化。為確保永續發展,發展替代能源是迫切的。可再生且永續燃料的需求促進奈米科技在運用太陽能方面的發展。光合生物混合系統 (Photosynthetic biohybrid systems, PBSs) 的目的為連結生物光合途徑和無機光吸收者。此系統同時擁有高效率的光吸收能力和卓越的催化表現,結合奈米材料和微生物的優勢。
人工光合作用結合奈米材料與微生物模擬光合作用,減少二氧化碳以及產生碳產物。在此研究中,我們將金奈米島狀薄膜 (Gold nano-island film, AuNIFs) 與熱莫爾氏菌 (Moorella thermoacetica) 一起培養,建立光合生物混合系統,藉由金奈米島狀薄膜來吸收光,並傳遞光誘發電子至熱莫爾氏菌,來提升二氧化碳-醋酸的轉換效率。
熱莫爾氏菌是一種厭氧醋酸菌,藉由Wood-Ljungdahl pathway,將二氧化碳轉換為醋酸,並有高單一生產物的特性。在本研究中,我們培養熱莫爾氏菌在金奈米島狀薄膜上,利用掃描式電子顯微鏡觀察其生長狀況,並藉由氣相層析質譜儀來測量並根據減量線計算醋酸產量。研究結果指出藉由整合奈米材料與微生物來發展半人工光合作用系統的潛能以及可能的未來發展,達到減少二氧化碳的目的。

Recently, the issue of energy consumption and greenhouse effect becomes serious. A large amount of greenhouse gas caused by fossil fuels is accelerating the global warming, and fossil fuels might be depleted in the future. It is imperative to cut CO2 emissions for ensuring the sustainable development. Therefore, developing alternative energy is needed. The demand for renewable and sustainable fuels is driving the development of nanotechnology in the use of solar energy. Photosynthetic biohybrid systems (PBSs) is designed to link biosynthetic pathways with inorganic light absorbers. The system inherits the advantages of nanomaterials and microorganisms, high light-harvesting efficiency and excellent catalytic performance.
Semi-artificial photosynthesis has been studied to integrate nanomaterials with microorganisms for CO2 reduction and hydrocarbon generation by mimicking the natural photosynthesis. In this study, we develop a semi-artificial photosynthesis system by culturing the acetogen- M. thermoacetica on the surface of AuNIFs. Absorbing light with AuNIFs and transferring the photo-induced electrons to M. thermoacetica for enhancing the efficiency of CO2-acetic acid conversion.
M. thermoacetica is a kind of acetogenic bacteria that convert CO2 to acetic acid with high selectivity through Wood-Ljungdahl (WL) pathway. The attachment of bacteria can be observed by SEM after culturing with materials, and the production of acetic acid was evaluated by GC-MS and calculated by calibration curve. Overall, the results demonstrate the potential of developing semi-artificial photosynthesis system by integrating organism and nanomaterials and the possibility of further research, for achieving the reduction of carbon dioxide.

目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 奈米材料 1
1-1-1 奈米材料之光熱效應 2
1-1-2 金奈米島狀薄膜 2
1-2 碳循環 4
1-2-1 自然界中的固碳反應 4
1-2-2 人工的固碳反應 6
1-3 生物混合系統 (Biohybrid system) 8
1-3-1 光合生物混合系統 (Photosynthetic biohybrid systems, PBSs) 8
1-4 研究動機 14
第二章 研究方法及步驟 16
2-1 藥品 16
2-2 設備與儀器 17
2-2-1 手套箱 (MBRAUN) 17
2-2-2 低溫/恆溫震盪培養箱 (LM-80DR) 17
2-2-3 直立式高壓蒸氣滅菌器 (TOMIN TM-328) 17
2-2-4 可攜式菌液濃度分析儀 (Biochrom) 18
2-2-5 往復式震盪恆溫水槽 (FIRSTEK B601D) 18
2-2-6 低溫循環水槽 (FIRSTEK B401H) 18
2-2-7 玻片迷你微量離心機 (LP-1414) 19
2-2-8 迴轉式震盪器 (TKS OS-701) 19
2-2-9 氙燈 (Enlitech) 19
2-2-10 紫外-可見-近紅外光光譜儀 20
2-2-11 掃描式電子顯微鏡 20
2-2-12 原子力顯微鏡 20
2-2-13 能量散射光譜儀 21
2-2-14 氣相層析質譜儀 21
2-3 實驗方法 22
2-3-1 製備金奈米島狀薄膜 (AuNIFs) 22
2-3-2 活化細菌及培養 23
2-3-3 成長M. thermoacetica於AuNIFs 24
2-3-4 熱莫爾氏菌產物分析 25
第三章 實驗結果與討論 26
3-1 金奈米島狀薄膜-結構分析 26
3-2 金奈米島狀薄膜-細菌貼附 28
3-3 熱莫爾氏菌二氧化碳還原產物分析 28
第四章 結論與未來展望 31
第五章 參考文獻 32
圖目錄
圖1-1 奈米材料根據維度的分類 1
圖1-2 光熱轉換之示意圖 2
圖1-3 不同金離子濃度下成長之金奈米島狀薄膜的吸收光譜 3
圖1-4 不同金離子濃度下成長之金奈米島狀薄膜的SEM圖 3
圖1-5 綠色植物光合作用示意圖 4
圖1-6 熱莫爾氏菌能量代謝Wood-Ljungdahl pathway途徑示意圖 5
圖1-7 人工固碳作用 7
圖1-8 半人工光合作用示意圖 7
圖1-9 光合生物混合系統概念圖 8
圖1-10 奈米線結合S. ovata的光合生物混合系統 10
圖1-11 緊密貼附奈米線-細菌混合系統及其反應途徑 10
圖1-12 硫化鎘奈米粒子/熱莫爾氏菌混合系統及其反應途徑 11
圖1-13 硫化鎘/熱莫爾氏菌混合系統電子傳遞途徑 12
圖1-14 金奈米團簇/熱莫爾氏菌系統示意圖 13
圖1-15 照光後的ROS濃度比較 (純細菌/生物混合系統/培養液) 13
圖1-16 醋酸轉換成有利用價值的化合物 14
圖1-17 二氧化碳濃度變化 (1750-2020年) 14
圖1-18 金奈米島狀薄膜/熱莫爾氏菌混合系統示意圖 15
圖2-1 手套箱 17
圖2-2 低溫/恆溫震盪培養箱 17
圖2-3 直立式高壓蒸氣滅菌器 17
圖2-4 可攜式菌液濃度分析儀 18
圖2-5 往復式震盪恆溫水槽 18
圖2-6 低溫循環水槽 18
圖2-7 玻片迷你微量離心機 19
圖2-8 迴轉式震盪器 19
圖2-9 製備金奈米島狀薄膜-清洗及修飾玻片 22
圖2-10 製備金奈米島狀薄膜-形成晶種 23
圖2-11 製備金奈米島狀薄膜-還原金離子形成金島 23
圖3-1 金奈米島狀薄膜-SEM圖 26
圖3-2 金奈米島狀薄膜-吸收光譜 26
圖3-3 金奈米島狀薄膜-能量色散X射線光譜 27
圖3-4 金奈米島狀薄膜-(a) 三維立體圖 (b) 表面高度分布圖 27
圖3-5 不同環境下細菌於金片表面貼附狀況-SEM圖 28
圖3-6 醋酸水溶液標準品的層析圖及質譜分析 29
圖3-7 由七種濃度的醋酸水溶液標準品組成的檢量線 30
圖3-8 金奈米島狀薄膜/熱莫爾氏菌系統醋酸產量之比較 30
表目錄
表1-1 已發表的光合生物混合系統 9
表1-2 再生能源種類 15
表2-1 藥品 16
表2-2 熱莫爾氏菌培養液成分 24
1.Society, R., Nanoscience and Nanotechnologies: Opportunities and Uncertainties: Summary and Recomendations. Royal Society: 2004.
2.Poh, T. Y.; Ali, N. A. t. B. M.; Mac Aogáin, M.; Kathawala, M. H.; Setyawati, M. I.; Ng, K. W.; Chotirmall, S. H., Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Particle and fibre toxicology 2018, 15, 1-16.
3.Hussein, E. A.; Zagho, M. M.; Nasrallah, G. K.; Elzatahry, A. A., Recent advances in functional nanostructures as cancer photothermal therapy. International journal of nanomedicine 2018, 13, 2897.
4.Ren, Y.; Liu, H.; Liu, X.; Zheng, Y.; Li, Z.; Li, C.; Yeung, K. W. K.; Zhu, S.; Liang, Y.; Cui, Z., Photoresponsive materials for antibacterial applications. Cell Reports Physical Science 2020, 1 (11).
5.Webb, J. A.; Bardhan, R., Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 2014, 6 (5), 2502-2530.
6.Tabakman, S. M.; Chen, Z.; Casalongue, H. S.; Wang, H.; Dai, H., A New Approach to Solution‐Phase Gold Seeding for SERS Substrates. Small 2011, 7 (4), 499-505.
7.Brown, K. R.; Lyon, L. A.; Fox, A. P.; Reiss, B. D.; Natan, M. J., Hydroxylamine seeding of colloidal Au nanoparticles. 3. Controlled formation of conductive Au films. Chemistry of Materials 2000, 12 (2), 314-323.
8.Rasmussen, M.; Minteer, S. D., Photobioelectrochemistry: solar energy conversion and biofuel production with photosynthetic catalysts. Journal of the Electrochemical Society 2014, 161 (10), H647.
9.Drake, H. L., Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. Acetogenesis 1994, 3-60.
10.Ragsdale, S. W.; Pierce, E., Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2008, 1784 (12), 1873-1898.
11.Mock, J.; Wang, S.; Huang, H.; Kahnt, J.; Thauer, R. K., Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. Journal of bacteriology 2014, 196 (18), 3303-3314.
12.Zhang, J.; Sewell, C. D.; Huang, H.; Lin, Z., Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization. Advanced Energy Materials 2021, 11 (47), 2102767.
13.Xiao, K.; Liang, J.; Wang, X.; Hou, T.; Ren, X.; Yin, P.; Ma, Z.; Zeng, C.; Gao, X.; Yu, T., Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy & Environmental Science 2022, 15 (2), 529-549.
14.Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M.; Junge, W.; Kramer, D. M.; Melis, A., Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. science 2011, 332 (6031), 805-809.
15.Sakimoto, K. K.; Kornienko, N.; Yang, P., Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems. Accounts of chemical research 2017, 50 (3), 476-481.
16.Yang, P.; Cai, R.; Kim, J. M.; Cestellos-Blanco, S.; Jin, J. In Microbes 2.0: Engineering Microbes with Nanomaterials, 2020.
17.Yang, P., Liquid sunlight: the evolution of photosynthetic biohybrids. ACS Publications: 2021; Vol. 21, pp 5453-5456.
18.Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C.; Yang, P., Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano letters 2015, 15 (5), 3634-3639.
19.Sakimoto, K. K.; Wong, A. B.; Yang, P., Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351 (6268), 74-77.
20.Zhang, H.; Liu, H.; Tian, Z.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P., Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nature nanotechnology 2018, 13 (10), 900-905.
21.Liu, C.; Tang, J.; Chen, H. M.; Liu, B.; Yang, P., A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano letters 2013, 13 (6), 2989-2992.
22.Nevin, K. P.; Woodard, T. L.; Franks, A. E.; Summers, Z. M.; Lovley, D. R., Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 2010, 1 (2), e00103-10.
23.Su, Y.; Cestellos-Blanco, S.; Kim, J. M.; Shen, Y.-x.; Kong, Q.; Lu, D.; Liu, C.; Zhang, H.; Cao, Y.; Yang, P., Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 2020, 4 (4), 800-811.
24.Gadd, G. M., Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 2010, 156 (3), 609-643.
25.Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.-Q.; Fredrickson, J. K., Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 2016, 14 (10), 651-662.
26.Yang, P.; Cai, R.; Kim, J. M.; Cestellos-Blanco, S.; Jin, J., Microbes 2.0: Engineering Microbes with Nanomaterials. AsiaChem Magazine 2020.
27.Kornienko, N.; Sakimoto, K. K.; Herlihy, D. M.; Nguyen, S. C.; Alivisatos, A. P.; Harris, C. B.; Schwartzberg, A.; Yang, P., Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proceedings of the National Academy of Sciences 2016, 113 (42), 11750-11755.
28.Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T., Fluorescent gold nanoclusters: recent advances in sensing and imaging. Analytical chemistry 2015, 87 (1), 216-229.
29.Mathew, A.; Pradeep, T., Noble metal clusters: applications in energy, environment, and biology. Particle & Particle Systems Characterization 2014, 31 (10), 1017-1053.
30.Zhang, X.-D.; Luo, Z.; Chen, J.; Song, S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y.; Gao, K.; Zhang, L., Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Scientific reports 2015, 5 (1), 8669.
31.Abbas, M. A.; Kamat, P. V.; Bang, J. H., Thiolated gold nanoclusters for light energy conversion. ACS Energy Letters 2018, 3 (4), 840-854.
32.Abbas, M. A.; Kim, T.-Y.; Lee, S. U.; Kang, Y. S.; Bang, J. H., Exploring interfacial events in gold-nanocluster-sensitized solar cells: insights into the effects of the cluster size and electrolyte on solar cell performance. Journal of the American Chemical Society 2016, 138 (1), 390-401.
33.Lin, J.; Zhang, H.; Chen, Z.; Zheng, Y., Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS nano 2010, 4 (9), 5421-5429.
34.Santiago-Gonzalez, B.; Monguzzi, A.; Azpiroz, J. M.; Prato, M.; Erratico, S.; Campione, M.; Lorenzi, R.; Pedrini, J.; Santambrogio, C.; Torrente, Y., Permanent excimer superstructures by supramolecular networking of metal quantum clusters. Science 2016, 353 (6299), 571-575.
35.Xiong, B.; Xu, R.; Zhou, R.; He, Y.; Yeung, E. S., Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au–Pt nanocomposites. Talanta 2014, 120, 262-267.
36.Arachchige, U.; Miyuranga, K. V.; Thilakarathne, D.; Jayasinghe, R.; Weerasekara, N., Biodiesel-alkaline transesterification process for methyl ester production. Nature Environment and Pollution Technology 2021, 20 (5), 1973-1980.
37.Carmichael, P. Materials and Devices for Photoelectrochemical and Photocatalytic Water Splitting. UCL (University College London), 2016.
38.Kalaichelvi, P.; Perumalsamy, M.; Arunagiri, A.; Sofiya, K., Synergistic extraction of acetic acid from its aqueous solution. Journal of the University of Chemical Technology and Metallurgy 2007, 42 (3), 291-294.
39.Khan, M. Z. H., Separation of acetic acid from aqueous solution using various organic solvents. Journal of Science and Technology 2013, 5 (2).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top