|
1.Pollard, A.J. and E.M. Bijker, A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol, 2021. 21(2): p. 83-100. 2.Lundberg, K., F. Rydnert, L. Greiff, and M. Lindstedt, Human blood dendritic cell subsets exhibit discriminative pattern recognition receptor profiles. Immunology, 2014. 142(2): p. 279-288. 3.Yadav, D.K., N. Yadav, and S.M.P. Khurana, Vaccines, in Animal Biotechnology. 2014. p. 491-508. 4.Burrell, C.J., C.R. Howard, and F.A. Murphy, Vaccines and vaccination, in Fenner and White's Medical Virology. 2017. p. 155-167. 5.Angsantikul, P., R.H. Fang, and L. Zhang, Toxoid vaccination against bacterial infection using cell membrane-coated nanoparticles. Bioconjug Chem, 2018. 29(3): p. 604-612. 6.Pardi, N., M.J. Hogan, F.W. Porter, and D. Weissman, mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov, 2018. 17(4): p. 261-279. 7.Geall, A.J., A. Verma, G.R. Otten, C.A. Shaw, A. Hekele, K. Banerjee, Y. Cu, C.W. Beard, L.A. Brito, T. Krucker, D.T. O'Hagan, M. Singh, P.W. Mason, N.M. Valiante, P.R. Dormitzer, S.W. Barnett, R. Rappuoli, J.B. Ulmer, and C.W. Mandl, Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A, 2012. 109(36): p. 14604-14609. 8.Fischer, S., T. Gerriets, C. Wessels, M. Walberer, S. Kostin, E. Stolz, K. Zheleva, A. Hocke, S. Hippenstiel, and K.T. Preissner, Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood, 2007. 110(7): p. 2457-2465. 9.Vartak, A. and S.J. Sucheck, Recent advances in subunit vaccine carriers. Vaccines (Basel), 2016. 4(2). 10.Nooraei, S., H. Bahrulolum, Z.S. Hoseini, C. Katalani, A. Hajizade, A.J. Easton, and G. Ahmadian, Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology, 2021. 19(1): p. 59. 11.Mohsen, M.O. and M.F. Bachmann, Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol, 2022. 19(9): p. 993-1011. 12.Suffian, I. and K.T. Al-Jamal, Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev, 2022. 180: p. 114030. 13.Syomin, B.V. and Y.V. Ilyin, Virus-like particles as an instrument of vaccine production. Mol Biol, 2019. 53(3): p. 323-334. 14.Mohsen, M.O., A.C. Gomes, M. Vogel, and M.F. Bachmann, Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines (Basel), 2018. 6(3). 15.Cheng, L., Y. Wang, and J. Du, Human papillomavirus vaccines: an updated review. Vaccines (Basel), 2020. 8(3). 16.Monie, A., C.-F. Hung, R. Roden, and T.C. Wu, Cervarix™: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics: Targets and Therapy, 2008. 2(1): p. 107-113. 17.Keating, G.M. and S. Noble, Recombinant Hepatitis B Vaccine (Engerix-B®). Drugs, 2003. 63(10): p. 1021-1051. 18.Zhang, X., M. Wei, H. Pan, Z. Lin, K. Wang, Z. Weng, Y. Zhu, L. Xin, J. Zhang, S. Li, N. Xia, and Q. Zhao, Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin((R)). Vaccine, 2014. 32(32): p. 4039-4050. 19.Tariq, H., S. Batool, S. Asif, M. Ali, and B.H. Abbasi, Virus-like particles: revolutionary platforms for developing vaccines against emerging infectious diseases. Front Microbiol, 2021. 12: p. 790121. 20.Fuenmayor, J., F. Godia, and L. Cervera, Production of virus-like particles for vaccines. N Biotechnol, 2017. 39(Pt B): p. 174-180. 21.Zeltins, A., Construction and characterization of virus-like particles: a review. Mol Biotechnol, 2013. 53(1): p. 92-107. 22.Rosano, G.L. and E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 2014. 5: p. 172. 23.Shirbaghaee, Z. and A. Bolhassani, Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers, 2016. 105(3): p. 113-132. 24.Mamat, U., K. Wilke, D. Bramhill, A.B. Schromm, B. Lindner, T.A. Kohl, J.L. Corchero, A. Villaverde, L. Schaffer, S.R. Head, C. Souvignier, T.C. Meredith, and R.W. Woodard, Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact, 2015. 14: p. 57. 25.Huang, C.J., H. Lin, and X. Yang, Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol, 2012. 39(3): p. 383-399. 26.Srivastava, V., K.N. Nand, A. Ahmad, and R. Kumar, Yeast-based virus-like particles as an emerging platform for vaccine development and delivery. Vaccines (Basel), 2023. 11(2): p. 479. 27.Kim, H.J. and H.J. Kim, Yeast as an expression system for producing virus-like particles: what factors do we need to consider? Lett Appl Microbiol, 2017. 64(2): p. 111-123. 28.Hamilton, S.R. and T.U. Gerngross, Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol, 2007. 18(5): p. 387-92. 29.Gopal, R. and A. Schneemann, Production and application of insect virus-based VLPs. Methods Mol Biol, 2018. 1776: p. 125-141. 30.Sari-Ak, D., J. Bufton, K. Gupta, F. Garzoni, D. Fitzgerald, C. Schaffitzel, and I. Berger, VLP-factory and ADDomer((c)) : self-assembling virus-like particle (VLP) technologies for multiple protein and peptide epitope display. Curr Protoc, 2021. 1(3): p. e55. 31.Chen, Q. and H. Lai, Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother, 2013. 9(1): p. 26-49. 32.Moon, K.B., J.H. Jeon, H. Choi, J.S. Park, S.J. Park, H.J. Lee, J.M. Park, H.S. Cho, J.S. Moon, H. Oh, S. Kang, H.S. Mason, S.Y. Kwon, and H.S. Kim, Construction of SARS-CoV-2 virus-like particles in plant. Sci Rep, 2022. 12(1): p. 1005. 33.Dumont, J., D. Euwart, B. Mei, S. Estes, and R. Kshirsagar, Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol, 2016. 36(6): p. 1110-1122. 34.Hsin, W.-C., C.-H. Chang, C.-Y. Chang, W.-H. Peng, C.-L. Chien, M.-F. Chang, and S.C. Chang, Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus. Journal of Biomedical Science, 2018. 25(1). 35.Buffin, S., I. Peubez, F. Barriere, M.C. Nicolai, T. Tapia, V. Dhir, E. Forma, N. Seve, and I. Legastelois, Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine, 2019. 37(46): p. 6857-6867. 36.Masavuli, M.G., D.K. Wijesundara, J. Torresi, E.J. Gowans, and B. Grubor-Bauk, Preclinical development and production of virus-like particles as vaccine candidates for hepatitis C. Front Microbiol, 2017. 8: p. 2413. 37.Shen, Z., M.P. Nieh, and Y. Li, Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers (Basel), 2016. 8(3). 38.Kianfar, E., Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology, 2021. 19(1): p. 159. 39.Verma, M.L., C.J. Barrow, and M. Puri, Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol, 2013. 97(1): p. 23-39. 40.Shah, A., S. Aftab, J. Nisar, M.N. Ashiq, and F.J. Iftikhar, Nanocarriers for targeted drug delivery. Journal of Drug Delivery Science and Technology, 2021. 62. 41.Chou, L.Y., K. Ming, and W.C. Chan, Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev, 2011. 40(1): p. 233-245. 42.Smith, A.M. and S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research, 2010. 43(2): p. 190-200. 43.Patel, P., A. Hanini, A. Shah, D. Patel, S. Patel, P. Bhatt, and Y.V. Pathak, Surface modification of nanoparticles for targeted drug delivery, in Surface Modification of Nanoparticles for Targeted Drug Delivery, Y.V. Pathak, Editor. 2019, Springer International Publishing: Cham. p. 19-31. 44.Niu, M., Y. Lu, L. Hovgaard, P. Guan, Y. Tan, R. Lian, J. Qi, and W. Wu, Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm, 2012. 81(2): p. 265-272. 45.Liu, P., G. Chen, and J. Zhang, A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules, 2022. 27(4). 46.Barenholz, Y., Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release, 2012. 160(2): p. 117-134. 47.Chamundeeswari, M., J. Jeslin, and M.L. Verma, Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 2018. 17(2): p. 849-865. 48.Perumal, S., R. Atchudan, and W. Lee, A review of polymeric micelles and their applications. Polymers (Basel), 2022. 14(12). 49.Lu, Y., E. Zhang, J. Yang, and Z. Cao, Strategies to improve micelle stability for drug delivery. Nano Res, 2018. 11(10): p. 4985-4998. 50.Prabhu, R.H., V.B. Patravale, and M.D. Joshi, Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine, 2015. 10: p. 1001-1018. 51.Wang, X., Y. Wang, Z.G. Chen, and D.M. Shin, Advances of cancer therapy by nanotechnology. Cancer Res Treat, 2009. 41(1): p. 1-11. 52.Guo, J., X. Gao, L. Su, H. Xia, G. Gu, Z. Pang, X. Jiang, L. Yao, J. Chen, and H. Chen, Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials, 2011. 32(31): p. 8010-8020. 53.Behl, A., S. Solanki, S.K. Paswan, T.K. Datta, A.K. Saini, R.V. Saini, V.S. Parmar, V.K. Thakur, S. Malhotra, and A.K. Chhillar, Biodegradable PEG-PCL nanoparticles for Co-delivery of MUC1 inhibitor and doxorubicin for the confinement of triple-negative breast cancer. J Polym Environ, 2023. 31(3): p. 999-1018. 54.Han, J., D. Zhao, D. Li, X. Wang, Z. Jin, and K. Zhao, Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers (Basel), 2018. 10(1). 55.Operti, M.C., A. Bernhardt, V. Sincari, E. Jager, S. Grimm, A. Engel, M. Hruby, C.G. Figdor, and O. Tagit, Industrial scale manufacturing and downstream processing of PLGA-based nanomedicines suitable for fully continuous operation. Pharmaceutics, 2022. 14(2). 56.Mohanty, A., S. Uthaman, and I.K. Park, Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancertTherapy. Molecules, 2020. 25(19). 57.Shi, J., Z. Xiao, A.R. Votruba, C. Vilos, and O.C. Farokhzad, Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl, 2011. 50(31): p. 7027-7031. 58.Hu, C.M., S. Kaushal, H.S. Tran Cao, S. Aryal, M. Sartor, S. Esener, M. Bouvet, and L. Zhang, Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm, 2010. 7(3): p. 914-920. 59.Zheng, Y., B. Yu, W. Weecharangsan, L. Piao, M. Darby, Y. Mao, R. Koynova, X. Yang, H. Li, S. Xu, L.J. Lee, Y. Sugimoto, R.W. Brueggemeier, and R.J. Lee, Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int J Pharm, 2010. 390(2): p. 234-241. 60.Gao, F., J. Zhang, C. Fu, X. Xie, F. Peng, J. You, H. Tang, Z. Wang, P. Li, and J. Chen, iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine, 2017. 12: p. 4147-4162. 61.Yu, Z., F. Chen, X. Qi, Y. Dong, Y. Zhang, Z. Ge, G. Cai, and X. Zhang, Epidermal growth factor receptor aptamer-conjugated polymer-lipid hybrid nanoparticles enhance salinomycin delivery to osteosarcoma and cancer stem cells. Exp Ther Med, 2018. 15(2): p. 1247-1256. 62.Cai, T., H. Liu, S. Zhang, J. Hu, and L. Zhang, Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy. J Nanobiotechnology, 2021. 19(1): p. 389. 63.Bachmann, M.F. and G.T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol, 2010. 10(11): p. 787-796. 64.Lin, L.C., C.Y. Huang, B.Y. Yao, J.C. Lin, A. Agrawal, A. Algaissi, B.H. Peng, Y.H. Liu, P.H. Huang, R.H. Juang, Y.C. Chang, C.T. Tseng, H.W. Chen, and C.J. Hu, Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against middle east respiratory syndrome coronavirus. Adv Funct Mater, 2019. 29(28): p. 1807616. 65.Shnoudeh, A.J., I. Hamad, R.W. Abdo, L. Qadumii, A.Y. Jaber, H.S. Surchi, and S.Z. Alkelany, Synthesis, characterization, and applications of metal nanoparticles, in Biomaterials and Bionanotechnology. 2019. p. 527-612. 66.Lim, T.S., J.K. Goh, A. Mortellaro, C.T. Lim, G.J. Hammerling, and P. Ricciardi-Castagnoli, CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells. PLoS One, 2012. 7(9): p. e45185. 67.Geckin, B., F. Konstantin Fohse, J. Dominguez-Andres, and M.G. Netea, Trained immunity: implications for vaccination. Curr Opin Immunol, 2022. 77: p. 102190. 68.Pertmer, T.M., T.R. Roberts, and J.R. Haynes, Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J Virol, 1996. 70(9): p. 6119-6125. 69.Adler, L.N., W. Jiang, K. Bhamidipati, M. Millican, C. Macaubas, S.C. Hung, and E.D. Mellins, The other function: class II-restricted antigen presentation by B Cells. Front Immunol, 2017. 8: p. 319.
|