跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈彥廷
研究生(外文):SHEN, YEN-TING
論文名稱:開發卵清蛋白類病毒樣PLGA奈米顆粒誘導小鼠體內免疫原性之研究
論文名稱(外文):Development of ovalbumin-spiked Virus-Like-PLGA-Nanoparticles (VLPN) to induce potent immunogenicity in mice
指導教授:邱士娟邱士娟引用關係許明照許明照引用關係
指導教授(外文):CHIU, SHIN-JIUANSHEU, MING-THAU
口試委員:邱士娟許明照林山陽何秀娥謝堅銘
口試委員(外文):CHIU, SHIN-JIUANSHEU, MING-THAULIN, SHAN-YANGHO, HSIU-OHSIEN, CHIEN-MING
口試日期:2023-06-12
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:85
中文關鍵詞:類病毒樣奈米顆粒疫苗卵清蛋白
外文關鍵詞:Virus-like-nanoparticleVaccineOvalbumin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
次單位疫苗的優點是因為它為非病毒基因體,不具傳染性且可簡單保存。當病毒樣顆粒疫苗利用抗原自體組裝後,可形成重複的抗原片段模仿病毒的外部結構,提高免疫原性,被抗原呈現細胞吞噬,並蓄積在淋巴結,活化免疫反應。但常見生產病毒樣顆粒的平台如細菌或酵母菌,其蛋白質轉譯後修飾與哺乳類動物會有所差異,進而影響蛋白質結構,使得此平台有所限制。本研究將開發,卵清蛋白類病毒樣聚乳酸甘醇酸奈米顆粒 (Ovalbumin virus like PLGA nanoparticles, OVA-VLPN) 的載體系統,病毒樣聚乳酸甘醇酸奈米顆粒開發為蛋白質次單位疫苗平台,以便接種宿主,可以產生更有效與特異性的中和抗體。相較於一般生產病毒樣顆粒的系統,沒有表達系統造成汙染的風險與高成本設備支出。本研究採用單乳相溶劑揮發法,利用卵清蛋白的硫醇基團與帶有馬來酰亞胺的DSPE-PEG2000-Maleimide經麥克爾加成反應 (Michael addition reaction) 反應後,製備成OVA-VLPN,其產率為37.76±0.7 %,粒徑為160.33±13.3 nm、PDI為0.164±0.04、ζ(mV)為-39.6±10.16。在 4°C 下,顆粒大小與均一性於28天內維持一定安定性,具有良好的安定性。於冷凍電子顯微鏡 (cryo-electron microscopy)下,觀察到完整球形結構與均一性的ovalbumin (OVA) 修飾於顆粒表面。在體外試驗中,OVA-VLPN能夠誘導CD80與CD86的活化,引起樹突細胞的成熟並且增強細胞吞噬能力。而在體內研究中,V25組別 (OVA-VLPN, 25 μg OVA and 5 μg Quil-A) 顯示出高度IgG與CD4+CD8+ T 細胞。具備抗體依賴性細胞介導的細胞毒性(antibody-dependent cell-mediated cytotoxicity, ADCC)與記憶型T細胞的特性,在未來可用於治療癌症以及防止癌症復發的潛力。在心肌纖維、肝細胞、脾髓細胞、肺泡或腎小球上皮細胞中沒有發現明顯的發炎現象、腫脹區域以及細胞損傷,顯示OVA-VLPN在主要器官中表現出良好的生物相容性與安全性。本研究開發的OVA-VLPN具有效增強體液性免疫反應,誘導抗體生成以及具有高度安全性。具有極大潛力應用於廣泛適用的疫苗平台。
The advantages of protein subunit vaccines are non-virus genome, non-infectious and simple conservation. Virus like particle (VLP) Utilizing the characteristic of nanoparticle, highly repetitive antigen fragments via antigen self-assembly to mimic the outer structure of the virus, improving immunogenicity, be phagocytized by antigen-presenting cells, and accumulate in lymph nodes to enhance the immune response. However, common production of virus-like particle platforms such as bacteria or yeast, Its protein post-translational modification is different from mammals and affects protein structure, which limits this platform. In this study, the carrier of Ovalbumin virus like nanoparticle (OVA-VLPN), was developed as a protein subunit vaccine platform so that the vaccinated host can produce more potent and specific neutralizing antibodies. Compared with the general production of virus-like particles (VLP), there is no possibility of contamination of the expression system and high equipment expenditure. The OVA-VLPN via thiol-maleimide conjugation reaction was prepared by a single-emulsion solvent evaporation method. The yield ratio, particle size, polydispersity index, and zeta potential of OVA-VLPN was 37.76±0.7%, 160.33±13.3 nm, 0.164±0.04, -39.6±10.16 mV. The particle size distribution and uniformity of OVA-VLPN remain stable at 4°C for one month. The spherical structure and uniform decorative ovalbumin (OVA) on the particle surface could be observed by the cryo-electron microscopy (cryo-EM). In the in vitro study, OVA-VLPN was able to induce the much higher activation of CD80 and CD86 leading to maturation of dendritic cells and enhance phagocytosis. In the in vivo study, the administration of V25 group (OVA-VLPN, 25 μg OVA and 5 μg Quil-A) shows high IgG and CD4+CD8+ T cells. Possesses the characteristics of antibody-dependent cell-mediated cytotoxicity (antibody-dependent cell-mediated cytotoxicity, ADCC) and memory T cells, and can be potential for treating cancer and preventing cancer recurrence in the future The tissue sections of major organs showed no inflammatory, swollen regions, , or damaged cells found in cardiac muscle fibers, hepatic cells, splenic cell , pulmonary alveoli cell , and glomerular epithelial cells, indicating that these OVA-VLPN exhibited good biocompatibility. In conclusion, the OVA-VLPN could effectively enhance humoral immune responses and reliable safety, thus, showed a well potential to be developed as a broadly applicable vaccine platform technology.
目錄

致謝 I
中文摘要 II
Abstract IV
目錄 VI
表目錄 IX
圖目錄 X
縮寫表 XVIII
第一章 緒論 1
一、 疫苗 1
1. 疫苗功能 1
2. 疫苗種類 3
3. VLP介紹 5
4. VLP的表達宿主系統 6
二、 奈米載體系統 10
1. 奈米載體種類 12
2. 奈米疫苗之被動運輸 20
第二章 實驗動機與目的 21
第三章 材料與實驗方法 24
一、 實驗材料 24
二、 實驗儀器 25
三、 Ovalbumin Virus like PLGA Nanoparticles (OVA-VLPN) 製備 27
四、 物化特性分析 29
1. Maleimide Virus like PLGA Nanoparticles (MAL-VLPN) 與Ovalbumin Virus like PLGA Nanoparticles (OVA-VLPN) 之粒徑、修飾率測定 29
2. Ovalbumin (OVA) 含量測定 29
3. 最佳化處方篩選 30
4. Ovalbumin Virus like PLGA Nanoparticles (OVA-VLPN) 結構分析 30
5. Ovalbumin Virus like PLGA Nanoparticles (OVA-VLPN) 安定性評估 30
五、 Ovalbumin Virus Like PLGA Nanoparticles (OVA-VLPN) 之體外試驗 32
1. DC 2.4 Mouse Dendritic Cell細胞培養 32
2. 細胞計數 32
3. 細胞毒性試驗 33
4. 抗原呈現細胞之活化能力評估 34
5. 細胞吞噬試驗 35
六、 Ovalbumin Virus like PLGA Nanoparticles (OVA-VLPN) 之動物試驗 37
1. 生物體內分布評估-活體成像系統(IVIS Spectrum) 39
2. 專一性抗體分析-酵素結合免疫吸附分析法 (ELISA) 40
3. 脾臟內免疫細胞分析 41
4. 組織染色切片 42
5. 免疫組織染色切片 42
6. 統計方法分析 42
第四章 實驗結果與討論 43
一、 處方設計與物化特性 43
1. 最佳化處方 43
2. MAL-VLPN之maleimide的分析方法確效 45
3. OVA-VLPN之ovalbumin的分析方法確效 47
4. MAL-VLPN之物化特性分析 49
5. OVA-VLPN之物化特性與OVA含量分析 49
6. OVA-VLPN 安定性評估 52
7. OVA-VLPN 結構分析 52
二、 OVA-VLPN細胞實驗 54
1. 細胞安全性試驗 54
2. 樹突細胞活化能力評估 55
3. 樹突細胞吞噬能力評估 56
4. 樹突細胞吞噬影像評估 57
三、 OVA-VLPN 動物實驗 60
1. 生物分佈 60
2. 抗體分析 65
3. 脾臟細胞分析 71
4. 組織切片 75
5. 安全性評估 77
第五章 結論 78
第六章 參考文獻 79

表目錄

Table 1 Commercial virus like particle vaccine. 5
Table 2 Classification, application areas, advantages, and disadvantages of polymer-based nanomaterials.[54] 15
Table 3 Classification, application areas, advantages, and disadvantages of polymer-based nanomaterials.[54] 16
Table 4 Protein and peptide decorative lipid polymer hybrid nanoparticle.[57-61] 19
Table 5 Optimal formulation of ovalbumin virus like PLGA nanoparticles (OVA-VLPN) 31
Table 6 The characteristic of optimal formulation of ovalbumin virus like PLGA nanoparticles (OVA-VLPN) 44
Table 7 Physical characteristics of maleimide virus like PLGA nanoparticles (MAL-VLPN). Data are presented as the mean ±SD (n = 3). 50
Table 8 Physical characteristics of ovalbumin virus like PLGA nanoparticles (OVA-VLPN). Data are presented as the mean ±SD (n = 3). 51
Table 9 C57BL/6 mice differentiation of B cells form spleen after 84 days post first injection. Maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100). 73
Table 10 C57BL/6 mice differentiation of T cells form spleen after 84 days post first injection. Maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100).. Statistical significance is indicated by **** p < 0.0001 compared to other groups. 74


圖目錄

Figure 1 The generation of an immune response to a vaccine.[1] 2
Figure 2 Advantages and limitations of different expression systems for the development of virus-like particles. [19] 6
Figure 3 Designing nanoparticles for intracellular applications. Nanoparticles can be modularly assembled from different materials composition with different physical and chemical properties and functionalized with a myriad of ligands for biological targeting. Such flexibility in design freedom enables researchers to tailor nanoparticle for specific intracellular applications as contrast agents, drug delivery vehicles, and therapeutics.[41] 11
Figure 4 Overall schematic representation of polymer-lipid hybrid nanoparticles (PLHNPs) and their applications. The hybrid system is developed from polymeric nanoparticles and liposomes covered by different types of PLHNPs. (A) Polymer core lipid shell, (B) Polymer caged liposome, (C) Monolithic PLHNPs, (D) Erythrocyte membrane-coated PLHNPs), (E) Core shell-type hollow lipid-polymer-lipid hybrid nanoparticles. The different applications of PLHNPs are also shown. (1) Delivery of various chemotherapeutic drugs. (2) Delivery of genes (siRNA, DNA). (3) Delivery of vaccines, ovalbumin (OVA), and Toll-Like Receptor (TLR) agonist for immune activation. (4) Imaging applications based on gadolinium (Gd), manganese (Mn), and gold (Au). (5) Photothermal therapy (PTT), photodynamic therapy (PDT), ultrasound, and alternative magnetic field (AMF). [56] 18
Figure 5 Schematic illustration of immunogenicity of ovalbumin virus like PLGA nanoparticle (OVA-VLPN) to enhance dendritic cell uptake and traffic to the lymph node, induce higher specific humoral immunity. 22
Figure 6 Flow chart of MAL-VLPN and OVA-VLPN preparation, physical characteristic, in vitro, in vivo study to ovalbumin virus like PLGA nanoparticles (OVA-VLPN). 23
Figure 7 The preparation of ovalbumin virus like PLGA nanoparticle (OVA-VLPN) using single emulsion solvent evaporation method. 28
Figure 8 Schematic illustration of animal protocol of ovalbumin virus like PLGA nanoparticle (OVA-VLPN) vaccine. 38
Figure 9 The H spectrum of dspe-peg020-maleimide-standard curve from 0.3125 to 10 mg /mL. The peak at (δ = 6.7 ppm) of was measured by 600H NMR and calculate the area of maleimide group .Each point is the average of three determinations. 45
Figure 10 Standard curve of dspe-peg2000-maleimide in dimethyl sulfoxide (A)Interday. (B) Intraday. The graph shows detection of dspe-peg2000-maleimide from 0.3125 to 10 mg /mL. The peak at (δ = 6.7 ppm) of was measured by 600H NMR and calculate the area of maleimide group .Each point is the average of three determinations. 46
Figure 11 Standard curve of ovalbumin by CBQCA Protein Quantitation Kit. The graph shows detection of ovalbumin from 0.03125 to 1 mg / mL. Fluorescence is detected by microplate reader with (Ex/Em:465/550 nm). Each point is the average of three determinations. (A) Interday. (B) Intraday. 48
Figure 12 The ovalbumin virus like PLGA nanoparticle (OVA-VLPN) image of cryo-EM 52
Figure 13 The stability of ovalbumin virus like PLGA nanoparticle (OVA-VLPN) after lyophilisation. (A) particle size and PDI. (B) Zeta potential(mV) at 4 °C in 28 days Data are presented as mean ± SD (n = 3). 53
Figure 14 Cell viability (%) of maleimide virus like nanoparticle (MAL-VLPN) group (blank), ovalbumin (OVA) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) group (V10, V25, V50,100). Live cells at 24 hours of exposure administration. Data are presented as mean ± SD (n = 3). 54
Figure 15 Dendritic Cell maturation at 24 hours of exposure to maleimide virus like nanoparticle (MAL-VLPN) group (blank), ovalbumin (OVA) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) group (V10, V25, V50,100). Data are presented as mean ± SD (n = 3). Statistical significance is indicated by * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to other groups 55
Figure 16 The dendritic cells uptake ability after exposure to maleimide virus like nanoparticle (MAL-VLPN) group (blank), ovalbumin (OVA) and ovalbumin virus like PLGA nanoparticle (OVA-VLPN). Statistical significance is indicated by ** p < 0.01, **** p < 0.0001 compared to other groups. 56
Figure 17 Cell uptake analysis by confocal microscopy. at 6, 12 hours of ovalbumin (OVA) and ovalbumin virus like PLGA nanoparticle (OVA-VLPN) exposure. 58
Figure 18 Cell uptake analysis by confocal microscopy. at 24, 36 hours of ovalbumin (OVA) and ovalbumin virus like PLGA nanoparticle (OVA-VLPN) exposure. 59
Figure 19 The back side of in vivo imaging system of C57/6 mice(N=4) after first intramuscular administration of control group (normal saline(DiR) ), DiR labeled maleimide virus like PLGA nanoparticle (MAL-VLPN(DiR)) group (blank), DiR labeled ovalbumin group (O10, O25, O50, O100), DiR labeled ovalbumin virus like PLGA nanoparticle (OVA-VLPN(DiR)) group (V10, V25, V50, V100). 61
Figure 20 The ventral side of in vivo imaging system of C57/6 mice(N=4) after first intramuscular administration of control group (normal saline(DiR) )DiR labeled maleimide virus like PLGA nanoparticle (MAL-VLPN(DiR)) group (blank), DiR labeled ovalbumin group (O10, O25, O50, O100), DiR labeled ovalbumin virus like PLGA nanoparticle (OVA-VLPN(DiR)) group (V10, V25, V50, V100). 62
Figure 21 The site of injection in vivo imaging system of C57/6 mice(N=4) after first intramuscular administration of control group (normal saline(DiR)), DiR labeled maleimide virus like PLGA nanoparticle (MAL-VLPN(DiR)) group (blank), DiR labeled ovalbumin group (O10, O25, O50, O100), DiR labeled ovalbumin virus like PLGA nanoparticle (OVA-VLPN(DiR)) group (V10, V25, V50, V100). 63
Figure 22 Inguinal lymph nodes of in vivo imaging system of C57/6 mice(N=4) after first intramuscular administration of control group (normal saline(DiR) ). DiR labeled maleimide virus like PLGA nanoparticle (MAL-VLPN(DiR)) group (blank), DiR labeled ovalbumin group (O10, O25, O50, O100), DiR labeled ovalbumin virus like PLGA nanoparticle (OVA-VLPN(DiR)) group (V10, V25, V50, V100). 64
Figure 23 The mice immunogenicity of VLPN vaccines after three intramuscular administration (BIW), maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100). The mouse anti ovalbumin immunoglobulin G (IgG) titer be analyzed by ELISA until 84 days of post-administration. (A) Line chart for analyzing booster immune response. (B) Bar chart for evaluating immune response of different group. Statistical significance is indicated by * p < 0.05, *** p < 0.001, **** p < 0.0001 compared to other groups. The IgG concentration of day1 is zero in order to be able to express the value on the log scale, it is represented by 1. N.D. is non-detect. 67
Figure 24 The mice immunogenicity of VLPN vaccines after three intramuscular administration (BIW), maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100). The mouse anti ovalbumin immunoglobulin G1 (IgG1) titer be analyzed by ELISA until 84 days of post-administration. (A) Line chart for analyzing booster immune response. (B) Bar chart for evaluating immune response of different group Statistical significance is indicated by **** p < 0.0001 compared to other groups. The IgG1 concentration of day1 is zero in order to be able to express the value on the log scale, it is represented by 1. N.D. is non-detect. 68
Figure 25 The mice immunogenicity of VLPN vaccines after three intramuscular administration (BIW), maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100). The mouse anti ovalbumin immunoglobulin G2a (IgG2a) titer be analyzed by ELISA until 84 days of post-administration. (A) Line chart for analyzing booster immune response. (B) Bar chart for evaluating immune response of different group. The IgG2a concentration of day1 is zero in order to be able to express the value on the log scale, it is represented by 1. N.D. is non-detect. 69
Figure 26 The mice immunogenicity of VLPN vaccines after three intramuscular administration (BIW), maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100). The ratio of mouse anti ovalbumin immunoglobulin G1 (IgG1) to mouse anti ovalbumin immunoglobulin G2a (IgG2a) be analyzed by ELISA until 84 days of post-administration. (A) Line chart for analyzing booster immune response. (B) Bar chart for evaluating immune response of different group. 70
Figure 27 Flowchart of flow cytometry analysis to C57BL/6 spleen cells. (A) B cell analysis of CD45 and MHCII B cell. (B) .T cell analysis of CD4 and CD8 T cell. Maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100). 72
Figure 28 Histopathology analysis of four organ (hearts, livers, lungs, kidneys) isolated form mice after three i.m. administration of maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100).BIW until 84 days. Magnification: 200X 76
Figure 29 Body weight changes of C57BL/6 mice (%) after three intramuscular(i.m.) administration BIW maleimide virus like nanoparticle (MAL-VLPN) and quil-A (5 μg) group (blank), ovalbumin (OVA) and quil-A (5 μg) group (O10, O25, O50, O100), ovalbumin virus like PLGA nanoparticle (OVA-VLPN) and quil-A (5 μg) group (V10, V25, V50,100). 77



1.Pollard, A.J. and E.M. Bijker, A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol, 2021. 21(2): p. 83-100.
2.Lundberg, K., F. Rydnert, L. Greiff, and M. Lindstedt, Human blood dendritic cell subsets exhibit discriminative pattern recognition receptor profiles. Immunology, 2014. 142(2): p. 279-288.
3.Yadav, D.K., N. Yadav, and S.M.P. Khurana, Vaccines, in Animal Biotechnology. 2014. p. 491-508.
4.Burrell, C.J., C.R. Howard, and F.A. Murphy, Vaccines and vaccination, in Fenner and White's Medical Virology. 2017. p. 155-167.
5.Angsantikul, P., R.H. Fang, and L. Zhang, Toxoid vaccination against bacterial infection using cell membrane-coated nanoparticles. Bioconjug Chem, 2018. 29(3): p. 604-612.
6.Pardi, N., M.J. Hogan, F.W. Porter, and D. Weissman, mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov, 2018. 17(4): p. 261-279.
7.Geall, A.J., A. Verma, G.R. Otten, C.A. Shaw, A. Hekele, K. Banerjee, Y. Cu, C.W. Beard, L.A. Brito, T. Krucker, D.T. O'Hagan, M. Singh, P.W. Mason, N.M. Valiante, P.R. Dormitzer, S.W. Barnett, R. Rappuoli, J.B. Ulmer, and C.W. Mandl, Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A, 2012. 109(36): p. 14604-14609.
8.Fischer, S., T. Gerriets, C. Wessels, M. Walberer, S. Kostin, E. Stolz, K. Zheleva, A. Hocke, S. Hippenstiel, and K.T. Preissner, Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood, 2007. 110(7): p. 2457-2465.
9.Vartak, A. and S.J. Sucheck, Recent advances in subunit vaccine carriers. Vaccines (Basel), 2016. 4(2).
10.Nooraei, S., H. Bahrulolum, Z.S. Hoseini, C. Katalani, A. Hajizade, A.J. Easton, and G. Ahmadian, Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology, 2021. 19(1): p. 59.
11.Mohsen, M.O. and M.F. Bachmann, Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol, 2022. 19(9): p. 993-1011.
12.Suffian, I. and K.T. Al-Jamal, Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev, 2022. 180: p. 114030.
13.Syomin, B.V. and Y.V. Ilyin, Virus-like particles as an instrument of vaccine production. Mol Biol, 2019. 53(3): p. 323-334.
14.Mohsen, M.O., A.C. Gomes, M. Vogel, and M.F. Bachmann, Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines (Basel), 2018. 6(3).
15.Cheng, L., Y. Wang, and J. Du, Human papillomavirus vaccines: an updated review. Vaccines (Basel), 2020. 8(3).
16.Monie, A., C.-F. Hung, R. Roden, and T.C. Wu, Cervarix™: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics: Targets and Therapy, 2008. 2(1): p. 107-113.
17.Keating, G.M. and S. Noble, Recombinant Hepatitis B Vaccine (Engerix-B®). Drugs, 2003. 63(10): p. 1021-1051.
18.Zhang, X., M. Wei, H. Pan, Z. Lin, K. Wang, Z. Weng, Y. Zhu, L. Xin, J. Zhang, S. Li, N. Xia, and Q. Zhao, Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin((R)). Vaccine, 2014. 32(32): p. 4039-4050.
19.Tariq, H., S. Batool, S. Asif, M. Ali, and B.H. Abbasi, Virus-like particles: revolutionary platforms for developing vaccines against emerging infectious diseases. Front Microbiol, 2021. 12: p. 790121.
20.Fuenmayor, J., F. Godia, and L. Cervera, Production of virus-like particles for vaccines. N Biotechnol, 2017. 39(Pt B): p. 174-180.
21.Zeltins, A., Construction and characterization of virus-like particles: a review. Mol Biotechnol, 2013. 53(1): p. 92-107.
22.Rosano, G.L. and E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 2014. 5: p. 172.
23.Shirbaghaee, Z. and A. Bolhassani, Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers, 2016. 105(3): p. 113-132.
24.Mamat, U., K. Wilke, D. Bramhill, A.B. Schromm, B. Lindner, T.A. Kohl, J.L. Corchero, A. Villaverde, L. Schaffer, S.R. Head, C. Souvignier, T.C. Meredith, and R.W. Woodard, Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact, 2015. 14: p. 57.
25.Huang, C.J., H. Lin, and X. Yang, Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol, 2012. 39(3): p. 383-399.
26.Srivastava, V., K.N. Nand, A. Ahmad, and R. Kumar, Yeast-based virus-like particles as an emerging platform for vaccine development and delivery. Vaccines (Basel), 2023. 11(2): p. 479.
27.Kim, H.J. and H.J. Kim, Yeast as an expression system for producing virus-like particles: what factors do we need to consider? Lett Appl Microbiol, 2017. 64(2): p. 111-123.
28.Hamilton, S.R. and T.U. Gerngross, Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol, 2007. 18(5): p. 387-92.
29.Gopal, R. and A. Schneemann, Production and application of insect virus-based VLPs. Methods Mol Biol, 2018. 1776: p. 125-141.
30.Sari-Ak, D., J. Bufton, K. Gupta, F. Garzoni, D. Fitzgerald, C. Schaffitzel, and I. Berger, VLP-factory and ADDomer((c)) : self-assembling virus-like particle (VLP) technologies for multiple protein and peptide epitope display. Curr Protoc, 2021. 1(3): p. e55.
31.Chen, Q. and H. Lai, Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother, 2013. 9(1): p. 26-49.
32.Moon, K.B., J.H. Jeon, H. Choi, J.S. Park, S.J. Park, H.J. Lee, J.M. Park, H.S. Cho, J.S. Moon, H. Oh, S. Kang, H.S. Mason, S.Y. Kwon, and H.S. Kim, Construction of SARS-CoV-2 virus-like particles in plant. Sci Rep, 2022. 12(1): p. 1005.
33.Dumont, J., D. Euwart, B. Mei, S. Estes, and R. Kshirsagar, Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol, 2016. 36(6): p. 1110-1122.
34.Hsin, W.-C., C.-H. Chang, C.-Y. Chang, W.-H. Peng, C.-L. Chien, M.-F. Chang, and S.C. Chang, Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus. Journal of Biomedical Science, 2018. 25(1).
35.Buffin, S., I. Peubez, F. Barriere, M.C. Nicolai, T. Tapia, V. Dhir, E. Forma, N. Seve, and I. Legastelois, Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine, 2019. 37(46): p. 6857-6867.
36.Masavuli, M.G., D.K. Wijesundara, J. Torresi, E.J. Gowans, and B. Grubor-Bauk, Preclinical development and production of virus-like particles as vaccine candidates for hepatitis C. Front Microbiol, 2017. 8: p. 2413.
37.Shen, Z., M.P. Nieh, and Y. Li, Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers (Basel), 2016. 8(3).
38.Kianfar, E., Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology, 2021. 19(1): p. 159.
39.Verma, M.L., C.J. Barrow, and M. Puri, Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol, 2013. 97(1): p. 23-39.
40.Shah, A., S. Aftab, J. Nisar, M.N. Ashiq, and F.J. Iftikhar, Nanocarriers for targeted drug delivery. Journal of Drug Delivery Science and Technology, 2021. 62.
41.Chou, L.Y., K. Ming, and W.C. Chan, Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev, 2011. 40(1): p. 233-245.
42.Smith, A.M. and S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research, 2010. 43(2): p. 190-200.
43.Patel, P., A. Hanini, A. Shah, D. Patel, S. Patel, P. Bhatt, and Y.V. Pathak, Surface modification of nanoparticles for targeted drug delivery, in Surface Modification of Nanoparticles for Targeted Drug Delivery, Y.V. Pathak, Editor. 2019, Springer International Publishing: Cham. p. 19-31.
44.Niu, M., Y. Lu, L. Hovgaard, P. Guan, Y. Tan, R. Lian, J. Qi, and W. Wu, Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm, 2012. 81(2): p. 265-272.
45.Liu, P., G. Chen, and J. Zhang, A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules, 2022. 27(4).
46.Barenholz, Y., Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release, 2012. 160(2): p. 117-134.
47.Chamundeeswari, M., J. Jeslin, and M.L. Verma, Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 2018. 17(2): p. 849-865.
48.Perumal, S., R. Atchudan, and W. Lee, A review of polymeric micelles and their applications. Polymers (Basel), 2022. 14(12).
49.Lu, Y., E. Zhang, J. Yang, and Z. Cao, Strategies to improve micelle stability for drug delivery. Nano Res, 2018. 11(10): p. 4985-4998.
50.Prabhu, R.H., V.B. Patravale, and M.D. Joshi, Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine, 2015. 10: p. 1001-1018.
51.Wang, X., Y. Wang, Z.G. Chen, and D.M. Shin, Advances of cancer therapy by nanotechnology. Cancer Res Treat, 2009. 41(1): p. 1-11.
52.Guo, J., X. Gao, L. Su, H. Xia, G. Gu, Z. Pang, X. Jiang, L. Yao, J. Chen, and H. Chen, Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials, 2011. 32(31): p. 8010-8020.
53.Behl, A., S. Solanki, S.K. Paswan, T.K. Datta, A.K. Saini, R.V. Saini, V.S. Parmar, V.K. Thakur, S. Malhotra, and A.K. Chhillar, Biodegradable PEG-PCL nanoparticles for Co-delivery of MUC1 inhibitor and doxorubicin for the confinement of triple-negative breast cancer. J Polym Environ, 2023. 31(3): p. 999-1018.
54.Han, J., D. Zhao, D. Li, X. Wang, Z. Jin, and K. Zhao, Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers (Basel), 2018. 10(1).
55.Operti, M.C., A. Bernhardt, V. Sincari, E. Jager, S. Grimm, A. Engel, M. Hruby, C.G. Figdor, and O. Tagit, Industrial scale manufacturing and downstream processing of PLGA-based nanomedicines suitable for fully continuous operation. Pharmaceutics, 2022. 14(2).
56.Mohanty, A., S. Uthaman, and I.K. Park, Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancertTherapy. Molecules, 2020. 25(19).
57.Shi, J., Z. Xiao, A.R. Votruba, C. Vilos, and O.C. Farokhzad, Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl, 2011. 50(31): p. 7027-7031.
58.Hu, C.M., S. Kaushal, H.S. Tran Cao, S. Aryal, M. Sartor, S. Esener, M. Bouvet, and L. Zhang, Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm, 2010. 7(3): p. 914-920.
59.Zheng, Y., B. Yu, W. Weecharangsan, L. Piao, M. Darby, Y. Mao, R. Koynova, X. Yang, H. Li, S. Xu, L.J. Lee, Y. Sugimoto, R.W. Brueggemeier, and R.J. Lee, Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int J Pharm, 2010. 390(2): p. 234-241.
60.Gao, F., J. Zhang, C. Fu, X. Xie, F. Peng, J. You, H. Tang, Z. Wang, P. Li, and J. Chen, iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine, 2017. 12: p. 4147-4162.
61.Yu, Z., F. Chen, X. Qi, Y. Dong, Y. Zhang, Z. Ge, G. Cai, and X. Zhang, Epidermal growth factor receptor aptamer-conjugated polymer-lipid hybrid nanoparticles enhance salinomycin delivery to osteosarcoma and cancer stem cells. Exp Ther Med, 2018. 15(2): p. 1247-1256.
62.Cai, T., H. Liu, S. Zhang, J. Hu, and L. Zhang, Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy. J Nanobiotechnology, 2021. 19(1): p. 389.
63.Bachmann, M.F. and G.T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol, 2010. 10(11): p. 787-796.
64.Lin, L.C., C.Y. Huang, B.Y. Yao, J.C. Lin, A. Agrawal, A. Algaissi, B.H. Peng, Y.H. Liu, P.H. Huang, R.H. Juang, Y.C. Chang, C.T. Tseng, H.W. Chen, and C.J. Hu, Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against middle east respiratory syndrome coronavirus. Adv Funct Mater, 2019. 29(28): p. 1807616.
65.Shnoudeh, A.J., I. Hamad, R.W. Abdo, L. Qadumii, A.Y. Jaber, H.S. Surchi, and S.Z. Alkelany, Synthesis, characterization, and applications of metal nanoparticles, in Biomaterials and Bionanotechnology. 2019. p. 527-612.
66.Lim, T.S., J.K. Goh, A. Mortellaro, C.T. Lim, G.J. Hammerling, and P. Ricciardi-Castagnoli, CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells. PLoS One, 2012. 7(9): p. e45185.
67.Geckin, B., F. Konstantin Fohse, J. Dominguez-Andres, and M.G. Netea, Trained immunity: implications for vaccination. Curr Opin Immunol, 2022. 77: p. 102190.
68.Pertmer, T.M., T.R. Roberts, and J.R. Haynes, Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J Virol, 1996. 70(9): p. 6119-6125.
69.Adler, L.N., W. Jiang, K. Bhamidipati, M. Millican, C. Macaubas, S.C. Hung, and E.D. Mellins, The other function: class II-restricted antigen presentation by B Cells. Front Immunol, 2017. 8: p. 319.


電子全文 電子全文(網際網路公開日期:20280704)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 開發泊洛沙姆溫敏感原位凝膠作為苯丁酸鈉和苯丁酸膽鹼鹽之眼部遞藥系統治療隅角開放性青光眼
2. 藉由製備苯基丁酸氯化膽鹼治療性深共熔系統和苯基丁酸膽鹼離子液體提高苯基丁酸的口服生體可用率和最小化的鈉負荷
3. 以雙重HER2區域II與IV標靶雙功能抗體非共價修飾之化療藥物負載聚乙二醇化奈米載體作為乳癌之協同加成化療
4. Sildenafil 速效性口溶膜與口溶錠之研發
5. 新型溫感性凝膠負載雙特異性T細胞接合抗體於原位皮下注射之研發與臨床應用
6. 利用奈米沉澱法開發包載CSD肽之脂質混合聚乳酸甘醇酸奈米粒子用於肝細胞癌治療之研究
7. 供應鏈夥伴企業社會責任的外溢效應
8. 基於Arduino之私有雲資料備份系統之架構實作
9. 藉由合適的機器學習來預測固態硬碟的壽命
10. 公司治理與盈餘管理的關聯性 -以台灣上市(櫃)公司為例,論新冠肺炎疫情的影響
11. 峇峇娘惹視覺文化創新設計與應用
12. 社群媒體對原住民投票行為影響之研究-以2022屏東縣原住民議員選舉為例
13. 原住民選民政黨認同、選舉策略與投票行為關係之研究-以2022花蓮縣山地原住民議員選舉為例
14. Influential Factors of Financial Security during the Covid-19 Pandemic in Lower Middle-income Countries of Latin America & the Caribbean
15. 檜木醇在體內及體外實驗對異位性皮膚炎的影響