跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:DEBBY SYAHRU ROMADLON
研究生(外文):DEBBY SYAHRU ROMADLON
論文名稱:Management of Fatigue and Glycated Hemoglobin in Patients Living With Type 2 Diabetes
論文名稱(外文):Management of Fatigue and Glycated Hemoglobin in Patients Living With Type 2 Diabetes
指導教授:邱曉彥邱曉彥引用關係
指導教授(外文):Hsiao-Yean Chiu
口試委員:胡慧蘭黃惠娟陳揚卿陳俞琪邱曉彥
口試委員(外文):Sophia H. HuSophia HuangYang-Ching ChenYu-Chi ChenHsiao-Yean Chiu
口試日期:2023-05-16
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:護理學系博士班
學門:醫藥衛生學門
學類:護理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:176
中文關鍵詞:疲勞糖化血紅蛋白2 型糖尿病
外文關鍵詞:FatigueGlycated HemoglobinType 2 DM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
目的:本系列研究的目的是探討 2 型糖尿病患者疲勞的全球患病率和危險因素(研究 1),將 MFI-20 的英文原版翻譯成印度尼西亞文版(IMFI-20), 調查 IMFI-20 在 2 型糖尿病患者中的可靠性和有效性(研究 2),使用網絡薈萃分析 (NMA) 比較數字輔助干預對 2 型糖尿病患者 HbA1c 的療效 和成分網絡薈萃分析 (CNMA) 方法(研究 3),並研究個性化糖尿病短信 (DB-TEXT) 結合 PSE 對糖尿病患者血糖控制、血脂水平、疲勞和生活質量的影響 2 糖尿病(研究 4)。
方法:研究 1 是一項系統回顧和流行薈萃分析。 從開始到 2020 年 12 月 16 日,在五個電子數據庫中系統地搜索了報告 2 型糖尿病患病率和危險因素的觀察性研究。研究 2 是一項橫斷面研究。 我們臨床採訪了 200 名 2 型糖尿病患者。 IMFI-20 的內部一致性和重測信度使用 Cronbach α 和組內相關性 (ICC) 進行評估。 還研究了 IMFI-20 的標準、收斂和已知組有效性,並使用解釋因素分析來確定

儀器的底層結構。 研究 3 是一項系統回顧和成分網絡薈萃分析。 從開始到 2021 年 11 月 7 日搜索了三個電子數據庫。只有隨機對照試驗檢查數字輔助干預(例如,移動應用程序 [MA]、在線遊戲)對 2 型 DM 患者 HbA1C 水平的影響。 使用隨機效應模型分析數據並表示為平均值和標準偏差 (SD)。 研究 4 是一項平行隨機對照試驗 (RCT)。 我們從 2022 年 12 月到 2023 年 3 月在糖尿病管理中心招募了 84 名 2 型糖尿病患者。 我們納入了在過去三個月內被診斷為 HbA1C 水平 > 7% 並擁有自己手機的 2 型糖尿病的成年人(年齡在 17 至 65 歲之間)。 主要和次要結果包括 HbA1c、空腹血糖 (FBG)、總膽固醇 (TC)、高密度脂蛋白 (HDL)、低密度脂蛋白 (LDL)、甘油三酯、疲勞和生活質量,在基線和 3 干預後數月。 結果:研究 1 包括 32 項研究,涉及 34,994 名 2 型糖尿病患者。 2 型 DM 的疲勞合併患病率為 50%。 抑鬱和體力活動是僅有的兩個同時與 2 型 DM 疲勞顯著相關的變量(所有 p < 0.05)。 研究 2 顯示 IMFI-20 具有良好的內部一致性(Cronbach's alpha 為 0.92)和重測 ICC 為 0.93。 IMFI-20 與慢性疾病治療功能評估-疲勞、貝克抑鬱量表-第二版和匹茲堡睡眠質量指數相關(分別為 r = 0.71、0.67 和 0.58)。 IMFI-20 證明了睡眠質量差和 HbA1C ≥ 6.5% 的已知組有效性。 研究 3 包括 65 項研究(8,951 名參與者)發現,與標準治療相比,MA 結合 PEP 和 PSE(平均差 = - 1.98)可顯著降低 HbA1C。 PSE是


顯著降低 HbA1C (-1.41) 的成分,其次是短信服務 (-0.30) 和 MA (-0.29)。 研究 4 招募了 83 名完成乾預的參與者,中位年齡為 55.0 歲。 與單獨使用 DB-TEXT 和單獨使用 PEP 相比,DB-TEXT + PSE 顯著降低了 FBG 和生活質量(所有 p < 0.05); 與單獨的 PEP 而不是單獨的 DB-TEXT 相比,DB-TEXT+PSE 分別顯著降低了 HbA1c 水平、TC 水平和疲勞水平(所有 p < 0.05)。
結論:研究 1 表明疲勞在 2 型糖尿病中非常普遍,並顯示出 2 型糖尿病疲勞的某些危險因素。 研究 2 表明 IMFI-20 是一種有效且可靠的工具,可用於測量印度尼西亞語社區 2 型糖尿病患者的多維疲勞。 研究 3 顯示 PSE、SMS 和 MA 是降低 2 型糖尿病患者 HbA1C 的有前途和最佳成分。 研究 4 證實,與單獨的 DB-TEXT 和單獨的 PEP 相比,個性化 DB-TEXT+PSE 在增強血糖控制和生活質量方面更有效。 與 2 型 DM 中單獨的 PEP 相比,個性化 DB-TEXT + PE 優於脂質譜和疲勞水平的改善。
Purposes: The purposes of this series study were to explore the global prevalence and risk factors of fatigue in patients with type 2 DM (Study 1), to translate the original English version of the MFI-20 into Indonesian version (IMFI-20) and to investigate the reliability and validity of the IMFI-20 in patients who living with type 2 DM (Study 2), to compare the efficacy of digital- assisted interventions on HbA1c in patients with type 2 DM using a network meta-analysis (NMA) and component network meta-analysis (CNMA) approach (Study 3), and to investigate the effects of personalized diabetes text messaging (DB-TEXT) combined with PSE on glycemic control, lipids level, fatigue, and quality of life in patients with type 2 DM (Study 4).
Methods: Study 1 was a systematic review and prevalence meta-analysis. Observational studies reporting the prevalence and risk factors in type 2 DM were systematically searched in five electronic databases from their inception until December 16, 2020. Study 2 was a cross-sectional study. We clinically interviewed 200 patients with type 2 DM. The internal consistency and test- retest reliability of the IMFI-20 were assessed using Cronbach's alpha and intraclass correlation (ICC). The IMFI-20's criterion, convergent, and known-group validity were also investigated, and explanatory factor analysis was used to identify the
II
instrument's underlying structure. Study 3 was a systematic review and component network meta-analysis. Three electronic databases were searched from the inception to November 07, 2021. Only randomized controlled trials examining the effects of digital-assisted intervention (e.g., mobile application [MA], online game) on HbA1C level in patients with type 2 DM. The data were analyzed using a random effect model and expressed as mean and standard deviation (SD). Study 4 was a parallel randomized controlled trial (RCT). We recruited 84 patients with type 2 DM from December 2022 to March 2023 at diabetes management centers. We included adults (aged between 17 and 65 years) who were diagnosed with type 2 DM having HbA1C level of > 7% in the past three months and had their own mobile phone. Primary and secondary outcomes included HbA1c, fasting blood glucose (FBG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride, fatigue, and quality of life, measured at baseline and 3 months after intervention. Results: Study 1 included 32 studies involving 34,994 patients with type 2 DM. The pooled prevalence of fatigue in type 2 DM was 50 %. Depression and physical activity were the only two variables that concurrently and significantly correlated with fatigue in type 2 DM (all p < 0.05). Study 2 revealed that the IMFI-20 had good internal consistency (Cronbach's alpha of 0.92) and a test-retest ICC of 0.93. The IMFI-20 was related to the Functional Assessment of Chronic Illness Therapy-Fatigue, the Beck Depression Inventory-Second Edition, and thePittsburgh Sleep Quality Index (r = 0.71, 0.67, and 0.58, respectively). The IMFI-20 demonstrated known-group validity for poor sleep quality and HbA1C ≥ 6.5%. Study 3 including 65 studies (8,951 participants) found that MA combined with PEP and PSE (mean difference = - 1.98) significantly reduce HbA1C in comparison with standard care. The PSE was the
III

component that significantly decreased HbA1C (-1.41), followed by short message service (- 0.30), and MA (-0.29). Study 4 enrolled 83 participants completed the interventions with median age of 55.0 years. The DB-TEXT+PSE significantly reduced FBG and quality of life compared to DB-TEXT alone and PEP alone, respectively (all p < 0.05); In comparison with PEP alone but not DB-TEXT alone, DB-TEXT+PSE significantly decreased HbA1c levels, TC levels, and fatigue levels, respectively (all p < 0.05).
Conclusion: Study 1 suggests that fatigue is highly prevalent with type 2 DM and showed certain risk factors for fatigue in type 2 DM. Study 2 shows the IMFI-20 is a valid instrument and reliable to measure the multidimensional of fatigue in type 2 DM of Indonesian-speaking communities. Study 3 reveals that PSE, SMS and MA are promising and optimal components in reducing HbA1C in patients with type 2 DM. Study 4 confirms that personalized DB- TEXT+PSE is more effective in enhancing glycemic control and quality of life in comparison with DB-TEXT alone and PEP alone. Personalized DB-TEXT+PE is superior to the improvement of lipid profile and fatigue level compared to PEP alone in type 2 DM.
Table of contents
Acknowledgement........................................................ I
Abstract .............................................................. II
Table of contents ..................................................... V
List of Tables ........................................................ VII
List of Figures ....................................................... IX
List of Abbreviations ................................................. X
CHAPTER 1. INTRODUCTION................................................ 1
1.1 Background ........................................................ 1
1.2 Research gap....................................................... 4
1.3 Aims of the studies ............................................... 7
1.4 Research hypotheses ............................................... 8
1.5 Conceptual and operational definition ............................. 9
CHAPTER 2. LITERATURE REVIEW........................................... 12
2.1 Fatigue following type 2 DM ....................................... 12
2.2 Risk factors of fatigue in patients with type 2 DM................. 14
2.3 Measurement tools for assessing fatigue following diabetes ........ 15
2.4 Digitally assisted intervention among patients with type 2 DM...... 17
2.5 Management of patients with type 2 DM in Indonesia ................ 21
CHAPTER 3. METHODOLOGY................................................. 23
3.1 Study 1 ........................................................... 23
3.2 Study 2 ........................................................... 25
3.3 Study 3 ........................................................... 30
3.4 Study 4 ........................................................... 39
CHAPTER 4. RESULTS..................................................... 51
4.1 Study 1 ........................................................... 51
4.2 Study 2 ........................................................... 70
4.3 Study 3............................................................ 76
4.4 Study 4 ........................................................... 128 CHAPTER 5. DISCUSSIONS................................................. 135
5.1 Study 1............................................................ 135
5.2 Study 2............................................................ 137
5.3 Study 3............................................................ 139
5.4 Study 4............................................................ 142 CHAPTER 6. CONCLUSIONS................................................. 145
6.1 Strengths and limitations.......................................... 146
6.2 Implication for nursing management ................................ 148 REFERENCES ............................................................ 150

List of Tables
Table
1. Conventional pairwise meta-analysis have reported the digitally assisted
interventions in patients with diabetes................................. 19
2. Example of articles searching........................................ 34
3. Definitions of Each Intervention included in Trials.................. 36
4. The content of DB-TEXT for 3 months.................................. 47
5. Instructions among Peer Supporter during Peer Support Education through
Telephone Calls......................................................... 49
6. Study characteristic related to prevalence of type 2 DM.............. 55
7. Assessment of methodology quality of included studies for cohort studies.. 59
8. Assessment of methodology quality of included studies for
case control studies ................................................... 60
9. Assessment of methodology quality of included studies for cross-sectional studies .................................................................61
10. Assessment of methodology quality of included studies for qualitative studies................................................................. 62
11. Prevalence of fatigue in type 2 DM according to geographical location... 66
12. Risk factors of type 2 DM-related fatigue............................68
13. Meta-regression and moderator analysis of diabetes fatigue prevalence in
patients with type 2 DM....................................... ..........71
14. Demographic characteristic ..........................................72
15. IMFI-20 floor and ceiling effects and internal consistency ..........73
16. Healthcare utilization of fatigue among patient with type 2 DM.......74
17. Exploratory factor analysis of the IMFI-20...........................69
18. Known group validity of IMFI-20 for different variables levels.......73
19. IMFI-20 correlations with FACIT-F, BDI-II, and PSQI..................75
20. List of the included and excluded studies after a full-text review...78
21. Characteristic of included randomized controlled trials..............80
22. The contents of intervention, control arms, and intervention duration of
included studies.........................................................84
23. Comparison of digitally assisted interventions on HbA1c level ......102
24. P score for treatment ranking.......................................107
25. Summary of a node-splitting analysis of included studies............108
26. CINeMA summary table for HbA1c......................................119
27. Demographic characteristic and baseline values in diabetes clinical outcomes................................................................130
28. The changes of glycemic control and quality of life in patients with
type 2 DM...............................................................133
29. Bonferroni comparison test..........................................134


List of Figures

1. Research framework of the study .....................................46
2. PRISMA flowchart involving type 2 DM ................................54
3. Forest plot of pooled prevalence of fatigue in patients with type 2 DM......................................................................64
4. Distribution of fatigue prevalence in type 2 DM according to country.................................................................65
5. PRISMA flowchart.....................................................79
6. Network plot of digitally assisted interventions for managing HbA1c of
patients with type 2 DM.................................................102
7. Forest plot of digitally assisted interventions for managing HbA1c...................................................................108
8. Forest plot for component of digital-assisted interventions for managing HbA1c...................................................................115
9. The comparison of results of the additive model (blue) and standard NMA model (black) for the efficacy of digitally assisted intervention on HbA1C in patients with type 2 DM......................................................................116
10. Risk of bias of included studies....................................118
11. Funnel plots of included studies....................................120
12. Consort flow diagram of the study...................................131
Aaronson, L. S., Teel, C. S., Cassmeyer, V., Neuberger, G. B., Pallikkathayil, L., Pierce, J., Press, A. N., Williams, P. D., & Wingate, A. (1999). Defining and measuring fatigue. Image: the journal of nursing scholarship, 31(1), 45-50.
Abaza, H., & Marschollek, M. (2017). SMS education for the promotion of diabetes self- management in low & middle income countries: a pilot randomized controlled trial in Egypt. BMC public health, 17(1), 1-19.
Abedini, M. R., Bijari, B., Miri, Z., Shakhs Emampour, F., & Abbasi, A. (2020). The quality of life of the patients with diabetes type 2 using EQ-5D-5 L in Birjand. Health and Quality of Life Outcomes, 18(1), 1-9.
Adeniyi, A. F., Ogwumike, O. O., Akinwonmi, A. O., & Fasanmade, A. A. J. I. J. o. D. i. D. C. (2014). Links between adiposity, physical activity and self-reported fatigue in patients with type 2 diabetes mellitus. 34(3), 144-149.
Adriaanse, M. C., Dekker, J. M., Spijkerman, A. M., Twisk, J. W., Nijpels, G., Van Der Ploeg, H. M., Heine, R. J., & Snoek, F. J. J. Q. o. L. R. (2005). Diabetes-related symptoms and negative mood in participants of a targeted population-screening program for type 2 diabetes: The Hoorn Screening Study. 14(6), 1501-1509.
Agustina, R., Dartanto, T., Sitompul, R., Susiloretni, K. A., Achadi, E. L., Taher, A., Wirawan, F., Sungkar, S., Sudarmono, P., & Shankar, A. H. (2019). Universal health coverage in Indonesia: concept, progress, and challenges. The Lancet, 393(10166), 75-102.
Alaofè, H., Amoussa Hounkpatin, W., Djrolo, F., Ehiri, J., & Rosales, C. (2022). Factors Associated with Quality of Life in Patients with Type 2 Diabetes of South Benin: A
152
Cross- Sectional Study. International Journal of Environmental Research and Public
Health, 19(4), 2360.
Alotaibi, M. M., Istepanian, R., & Philip, N. (2016). A mobile diabetes management and
educational system for type-2 diabetics in Saudi Arabia (SAED). Mhealth, 2. Aminuddin, H. B., Jiao, N., Jiang, Y., Hong, J., & Wang, W. (2021). Effectiveness of smartphone- based self-management interventions on self-efficacy, self-care activities, health-related quality of life and clinical outcomes in patients with type 2 diabetes: A systematic review and meta-analysis. International journal of nursing
studies, 116, 103286.
An, Y., Zhang, P., Wang, J., Gong, Q., Gregg, E. W., Yang, W., Li, H., Zhang, B., Shuai, Y.,
& Chen, Y. (2015). Cardiovascular and all-cause mortality over a 23-year period among Chinese with newly diagnosed diabetes in the Da Qing IGT and Diabetes Study. Diabetes care, 38(7), 1365-1371.
Andrade, C. (2018). Internal, external, and ecological validity in research design, conduct, and evaluation. Indian journal of psychological medicine, 40(5), 498-499.
Asante, E., Bam, V., Diji, A. K.-A., Lomotey, A. Y., Owusu Boateng, A., Sarfo-Kantanka, O., Oparebea Ansah, E., & Adjei, D. (2020). Pilot mobile phone intervention in promoting type 2 diabetes management in an urban area in Ghana: a randomized controlled trial. The Diabetes Educator, 46(5), 455-464.
Aschner, P. (2017). New IDF clinical practice recommendations for managing type 2 diabetes in primary care. Diabetes research and clinical practice, 132, 169-170.
Association, A. D. (2014). Diagnosis and classification of diabetes mellitus. Diabetes care, 37(Supplement_1), S81-S90.
153

Bächle, C., Lange, K., Stahl-Pehe, A., Castillo, K., Holl, R. W., Giani, G., & Rosenbauer, J. (2015). Associations between HbA1c and depressive symptoms in young adults with early-onset type 1 diabetes. Psychoneuroendocrinology, 55, 48-58.
Baptista, R. L. R., Biasoli, I., Scheliga, A., Soares, A., Brabo, E., Morais, J. C., Werneck, G. L., & Spector, N. (2012). Psychometric properties of the multidimensional fatigue inventory in Brazilian Hodgkin's lymphoma survivors. Journal of pain and symptom management, 44(6), 908-915.
Barsevick, A., Frost, M., Zwinderman, A., Hall, P., & Halyard, M. (2010). I’m so tired: biological and genetic mechanisms of cancer-related fatigue. Quality of Life Research, 19(10), 1419- 1427.
Bartlett, M. S. (1950). Tests of significance in factor analysis. British journal of psychology. Başoğlu, F., Öncü, J., Kuran, B., & Alptekin, H. K. (2020). The reliability and validity of The Turkish version of Multidimensional Fatigue Inventory-20 for the evaluation of different dimensions of fatigue in patients with fibromyalgia. Turkish journal of
physical medicine and rehabilitation, 66(4), 436.
Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the
process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186-
3191.
Beck, A., Steer, R., Brown, G., & Van der Does, A. (2002). BDI-II-NL Handleiding [BDI-II-
Dutch Manual]. Lisse, The Netherlands: Psychological Corporation.
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory (BDI-II) (Vol.
10).Pearson London, UK.
Bener, A., Al-Hamaq, A. O., Ağan, A. F., Öztürk, M., Ömer, A. J. J. o. f. m., & care, p.
154

(2019). The prevalence of restless legs syndrome and comorbid condition among
patient with type 2 diabetic mellitus visiting primary healthcare. 8(12), 3814.
Bot, M., Pouwer, F., De Jonge, P., Tack, C., Geelhoed‐Duijvestijn, P., & Snoek, F. J. J. D. m. (2013). Differential associations between depressive symptoms and glycaemic
control in outpatients with diabetes. 30(3), e115-e122.
Brod, M., Christensen, T., & Bushnell, D. M. J. J. o. M. E. (2012). Impact of nocturnal
hypoglycemic events on diabetes management, sleep quality, and next-day function:
results from a four-country survey. 15(1), 77-86.
Buss, T., Kruk, A., Wiśniewski, P., Modlinska, A., Janiszewska, J., & Lichodziejewska-
Niemierko, M. (2014). Psychometric properties of the Polish version of the Multidimensional Fatigue Inventory-20 in cancer patients. Journal of pain and symptom management, 48(4), 730- 737.
Buysse, D. J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry research, 28(2), 193-213.
Care, A. o. D., Specialists, E., & Kolb, L. (2021). An effective model of diabetes care and education: the ADCES7 Self-Care BehaviorsTM. The Science of Diabetes Self- Management and Care, 47(1), 30-53.
Care, D. (2022). Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes care, 45(1), S113-S124.
Cella, D., Yount, S., Sorensen, M., Chartash, E., Sengupta, N., & Grober, J. (2005). Validation of the Functional Assessment of Chronic Illness Therapy Fatigue Scale relative to other instrumentation in patients with rheumatoid arthritis. The Journal of
155

rheumatology, 32(5), 811-819.
Chaimani, A., Higgins, J. P., Mavridis, D., Spyridonos, P., & Salanti, G. (2013). Graphical tools for network meta-analysis in STATA. PLoS One, 8(10), e76654.
Chandel, P., Sultan, A., Khan, K. A., Choudhary, V., & Parganiha, A. (2015). Validation of the Hindi version of the Multidimensional Fatigue Inventory-20 (MFI-20) in Indian cancer patients. Supportive Care in Cancer, 23(10), 2957-2964.
Chasens, E. R., Korytkowski, M., Sereika, S. M., & Burke, L. E. (2013). Effect of poor sleep quality and excessive daytime sleepiness on factors associated with diabetes self- management. The Diabetes Educator, 39(1), 74-82.
Chrvala, C. A., Sherr, D., & Lipman, R. D. (2016). Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient education and counseling, 99(6), 926-943.
Chung, K.-F., Yu, B. Y.-M., Yung, K.-P., Yeung, W.-F., Ng, T. H., & Ho, F. Y.-Y. (2014). Assessment of fatigue using the Multidimensional Fatigue Inventory in patients with major depressive disorder. Comprehensive psychiatry, 55(7), 1671-1678.
Çinar, D., & Yava, A. (2018). Validity and reliability of functional assessment of chronic illness treatment-fatigue scale in Turkish patients with type 2 diabetes. Endocrinología, Diabetes y Nutrición (English ed.), 65(7), 409-417.
Dennis, C.-L. (2003). Peer support within a health care context: a concept analysis. International journal of nursing studies, 40(3), 321-332.
DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled clinical trials, 7(3), 177-188.
Dobson, R., Whittaker, R., Jiang, Y., Maddison, R., Shepherd, M., McNamara, C., Cutfield,
156

R., Khanolkar, M., & Murphy, R. (2018). Effectiveness of text message based, diabetes self management support programme (SMS4BG): two arm, parallel randomised controlled trial. BMJ, 361, k1959. https://doi.org/10.1136/bmj.k1959
Dong, Y., Wang, P., Dai, Z., Liu, K., Jin, Y., Li, A., Wang, S., & Zheng, J. (2018). Increased self- care activities and glycemic control rate in relation to health education via Wechat among diabetes patients: a randomized clinical trial. Medicine, 97(50).
Draznin, B., Aroda, V. R., Bakris, G., Benson, G., Brown, F. M., Freeman, R., Green, J., Huang, E., Isaacs, D., & Kahan, S. (2022). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes care, 45(Supplement_1), S17- S38.
Drivsholm, T., de Fine Olivarius, N., Nielsen, A., & Siersma, V. J. D. (2005). Symptoms, signs and complications in newly diagnosed type 2 diabetic patients, and their relationship to glycaemia, blood pressure and weight. 48(2), 210-214.
Egger, M., Smith, G. D., Schneider, M., & Minder, C. J. B. (1997). Bias in meta-analysis detected by a simple, graphical test. 315(7109), 629-634.
Elbers, R. G., van Wegen, E. E., Verhoef, J., & Kwakkel, G. (2012). Reliability and structural validity of the Multidimensional Fatigue Inventory (MFI) in patients with idiopathic Parkinson's disease. Parkinsonism & related disorders, 18(5), 532-536.
Fakhri, M., Abdan, M., Ramezanpour, M., Dehkordi, A. H., & Sarikhani, D. (2021). Systematic review and meta-analysis on quality of life in diabetic patients in Iran. International journal of preventive medicine, 12.
Faul, F., Erdfelder, E., & Lang, A. (2009). G* Power 3.1: Test for correlation and regression analyses flexible statistical power analysis. Behavior Research Methods,
157

41(4), 1149-1160.
Fortmann, A. L., Gallo, L. C., Garcia, M. I., Taleb, M., Euyoque, J. A., Clark, T., Skidmore,
J., Ruiz, M., Dharkar-Surber, S., & Schultz, J. (2017). Dulce Digital: an mHealth SMS-based intervention improves glycemic control in Hispanics with type 2 diabetes. Diabetes care, 40(10), 1349-1355.
Fritschi, C., Park, C., Quinn, L., & Collins, E. G. J. B. r. f. n. (2020). Real-Time Associations Between Glucose Levels and Fatigue in Type 2 Diabetes: Sex and Time Effects. 22(2), 197-204.
Fritschi, C., & Quinn, L. (2010). Fatigue in patients with diabetes: a review. Journal of psychosomatic research, 69(1), 33-41.
Fritschi, C., Quinn, L., Hacker, E. D., Penckofer, S. M., Wang, E., Foreman, M., & Ferrans, C. E. (2012). Fatigue in women with type 2 diabetes. The Diabetes Educator, 38(5), 662-672.
Fukuda, M., Doi, K., Sugawara, M., Naka, Y., & Mochizuki, K. J. J. o. c. m. r. (2015). Survey of hypoglycemia in elderly people with type 2 diabetes mellitus in Japan. 7(12), 967. Funnell, M. M. (2010). Peer-based behavioural strategies to improve chronic disease self- management and clinical outcomes: evidence, logistics, evaluation considerations
and needs for future research. Family practice, 27(suppl_1), i17-i22.
García, A. A., Bose, E., Zuñiga, J. A., & Zhang, W. J. A. N. R. (2019). Mexican Americans'
diabetes symptom prevalence, burden, and clusters. 46, 37-42.
Gecaite-Stonciene, J., Bunevicius, A., Burkauskas, J., Brozaitiene, J., Neverauskas, J., Mickuviene, N., & Kazukauskiene, N. (2020). Validation of the multidimensional fatigue inventory with coronary artery disease patients. International Journal of
158

Environmental Research and Public Health, 17(21), 8003.
Gentile, S., Delarozière, J., Favre, F., Sambuc, R., & San Marco, J. (2003). Validation of the
French ‘multidimensional fatigue inventory’(MFI 20). European journal of cancer
care, 12(1), 58-64.
Ginting, H., Näring, G., Van Der Veld, W. M., Srisayekti, W., & Becker, E. S. (2013).
Validating the Beck Depression Inventory-II in Indonesia's general population and coronary heart disease patients. International Journal of Clinical and Health Psychology, 13(3), 235-242.
Goedendorp, M. M., Tack, C. J., Steggink, E., Bloot, L., Bazelmans, E., & Knoop, H. (2014). Chronic fatigue in type 1 diabetes: highly prevalent but not explained by hyperglycemia or glucose variability. Diabetes care, 37(1), 73-80.
Goodarzi, M., Ebrahimzadeh, I., Rabi, A., Saedipoor, B., & Jafarabadi, M. A. (2012). Impact of distance education via mobile phone text messaging on knowledge, attitude, practice and self efficacy of patients with type 2 diabetes mellitus in Iran. Journal of diabetes & Metabolic disorders, 11(1), 1-8.
Griggs, S., & Morris, N. S. (2018). Fatigue among adults with type 1 diabetes mellitus and implications for self-management: An integrative review. The Diabetes Educator, 44(4), 325-339.
Güner, T. A., & Coşansu, G. (2020). The effect of diabetes education and short message service reminders on metabolic control and disease management in patients with type 2 diabetes mellitus. Primary care diabetes, 14(5), 482-487.
Haider, R., Sudini, L., Chow, C. K., & Cheung, N. W. (2019). Mobile phone text messaging in improving glycaemic control for patients with type 2 diabetes mellitus: a systematic
159

review and meta-analysis. Diabetes research and clinical practice, 150, 27-37. Hernandez, L., Leutwyler, H., Cataldo, J., Kanaya, A., Swislocki, A., & Chesla, C. J. N. r. (2019). Symptom experience of older adults with type 2 diabetes and diabetes-related
distress. 68(5), 374-382.
Higgins, J. P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019). Cochrane handbook for systematic reviews of interventions. John Wiley & Sons.
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. J. B. (2003). Measuring inconsistency in meta-analyses. 327(7414), 557-560.
Hou, C., Xu, Q., Diao, S., Hewitt, J., Li, J., & Carter, B. (2018). Mobile phone applications and self‐management of diabetes: A systematic review with meta‐analysis, meta‐ regression of 21 randomized trials and GRADE. Diabetes, Obesity and Metabolism, 20(8), 2009-2013.
Hu, H., Sawhney, M., Shi, L., Duan, S., Yu, Y., Wu, Z., Qiu, G., & Dong, H. (2015). A systematic review of the direct economic burden of type 2 diabetes in China. Diabetes Therapy, 6(1), 7-16.
Huang, L., Yan, Z., & Huang, H. (2019). The effect of short message service intervention on glycemic control in diabetes: a systematic review and meta-analysis. Postgraduate medicine, 131(8), 566-571.
Huibers, M. J. H., Leone, S. S., van Amelsvoort, L. G. P. M., Kant, I., & Knottnerus, J. A. (2007). Associations of fatigue and depression among fatigued employees over time: A 4-year follow-up study. Journal of Psychosomatic Research, 63(2), 137-142. https://doi.org/https://doi.org/10.1016/j.jpsychores.2007.02.014
160

Hutton, B., Salanti, G., Caldwell, D. M., Chaimani, A., Schmid, C. H., Cameron, C., Ioannidis, J. P., Straus, S., Thorlund, K., & Jansen, J. P. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta- analyses of health care interventions: checklist and explanations. Annals of internal medicine, 162(11), 777-784.
Im, E.-O., Yang, Y. L., Liu, J., & Chee, W. J. M. (2019). Sleep-related symptoms of midlife women with and without type 2 diabetes mellitus. 26(10), 1178-1184.
Irianti, S. R., Wicaksana, A. L., & Pangastuti, H. S. (2021). Validity and Realiability Test of The Indonesian Version for Diabetes Quality of Life-Brief Clinical Inventory. Indian Journal of Public Health, 12(1), 435.
Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N: q hypothesis. Structural equation modeling, 10(1), 128-141.
Jelsness-Jørgensen, L.-P., Moum, B., Grimstad, T., Jahnsen, J., Hovde, Ø., Frigstad, S. O., & Bernklev, T. (2022). The multidimensional fatigue inventory (MFI-20): psychometrical testing in a Norwegian sample of inflammatory bowel disease (IBD) patients. Scandinavian Journal of Gastroenterology, 1-7.
Jensen, Ø., Bernklev, T., Gibbs, C., Moe, R. B., Hofsø, D., & Jelsness-Jørgensen, L.-P. (2018). Fatigue in type 1 diabetes, prevalence, predictors and comparison with the background population. Diabetes research and clinical practice, 143, 71-78.
Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer. Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.
Psychometrika, 23(3), 187-200.
Kaiser, H. F. (1970). A second generation little jiffy.
161

Kalra, S., & Sahay, R. (2018). Diabetes fatigue syndrome. In (Vol. 9, pp. 1421-1429): Springer. Kebede, M. M., Zeeb, H., Peters, M., Heise, T. L., & Pischke, C. R. (2018). Effectiveness of digital interventions for improving glycemic control in persons with poorly controlled type 2 diabetes: a systematic review, meta-analysis, and meta-regression analysis.
Diabetes technology & therapeutics, 20(11), 767-782.
Kemenkes, R. (2018). Hasil utama RISKESDAS 2018. Jakarta: Kemenkes RI.
Keulers, B. J., Welters, C. F., Spauwen, P. H., & Houpt, P. (2007). Can face-to-face patient education be replaced by computer-based patient education? A randomised trial. Patient education and counseling, 67(1-2), 176-182.
Kilpatrick, E. (2008). Haemoglobin A1c in the diagnosis and monitoring of diabetes mellitus.Journal of clinical pathology, 61(9), 977-982.
Kim, Y., Park, J.-E., Lee, B.-W., Jung, C.-H., & Park, D.-A. (2019). Comparative effectiveness of telemonitoring versus usual care for type 2 diabetes: A systematic review and meta- analysis. Journal of telemedicine and telecare, 25(10), 587-601.
Kirk, J. K., & Stegner, J. (2010). Self-monitoring of blood glucose: practical aspects. Journal of diabetes science and technology, 4(2), 435-439.
Knutson, K. L., Ryden, A. M., Mander, B. A., & Van Cauter, E. (2006). Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. Archives of internal medicine, 166(16), 1768-1774.
Kong, L. N., Hu, P., Yang, L., & Cui, D. (2019). The effectiveness of peer support on self‐ efficacy and quality of life in adults with type 2 diabetes: A systematic review and meta‐analysis. Journal of Advanced Nursing, 75(4), 711-722.
Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation
162

coefficients for reliability research. Journal of chiropractic medicine, 15(2), 155-163. Krishnamoorthy, Y., Sakthivel, M., Sarveswaran, G., & Eliyas, S. K. (2019). Effectiveness of peer led intervention in improvement of clinical outcomes among diabetes mellitus and hypertension patients—A systematic review and meta-analysis. Primary care
diabetes, 13(2), 158-169.
Krupp, L. B., LaRocca, N. G., Muir-Nash, J., & Steinberg, A. D. (1989). The fatigue severity
scale: application to patients with multiple sclerosis and systemic lupus
erythematosus. Archives of neurology, 46(10), 1121-1123.
Kuo, H.-J., Huang, Y.-C., García, A. A. J. J. o. i., & health, m. (2020). Fatigue, pain, sleep
difficulties, and depressive symptoms in Mexican Americans and Chinese Americans
with type 2 diabetes. 1-8.
Kyriazos, T. A. (2018). Applied psychometrics: sample size and sample power
considerations in factor analysis (EFA, CFA) and SEM in general. Psychology, 9(08),
2207.
Lasselin, J., Layé, S., Dexpert, S., Aubert, A., Gonzalez, C., Gin, H., & Capuron, L. (2012).
Fatigue symptoms relate to systemic inflammation in patients with type 2 diabetes.
Brain, behavior, and immunity, 26(8), 1211-1219.
Li, H., Ji, M., Scott, P., & Dunbar-Jacob, J. M. J. T. D. E. (2019). The effect of symptom
clusters on quality of life among patients with type 2 diabetes. 45(3), 287-294. Liang, D., Jia, R., Zhou, X., Lu, G., Wu, Z., Yu, J., Wang, Z., Huang, H., Guo, J., & Chen, C. (2021). The effectiveness of peer support on self-efficacy and self-management in people with type 2 diabetes: A meta-analysis. Patient education and counseling,
104(4), 760-769.
163

Lim, S. L., Ong, K. W., Johal, J., Han, C. Y., Yap, Q. V., Chan, Y. H., Chooi, Y. C., Zhang, Z. P., Chandra, C. C., & Thiagarajah, A. G. (2021). Effect of a smartphone app on weight change and metabolic outcomes in asian adults with type 2 diabetes: a randomized clinical trial. JAMA network open, 4(6), e2112417-e2112417.
Lin, E. H., Katon, W., Von Korff, M., Rutter, C., Simon, G. E., Oliver, M., Ciechanowski, P., Ludman, E. J., Bush, T., & Young, B. (2004). Relationship of depression and diabetes self- care, medication adherence, and preventive care. Diabetes care, 27(9), 2154-2160.
Lin, J.-M. S., Brimmer, D. J., Maloney, E. M., Nyarko, E., BeLue, R., & Reeves, W. C. (2009). Further validation of the Multidimensional Fatigue Inventory in a US adult population sample. Population health metrics, 7(1), 1-13.
Lu, G., & Ades, A. (2004). Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in medicine, 23(20), 3105-3124.
Lundh Hagelin, C., Wengström, Y., Runesdotter, S., & Johan Fürst, C. (2007). The psychometric properties of the Swedish Multidimensional Fatigue Inventory MFI-20 in four different populations. Acta Oncologica, 46(1), 97-104.
Lyu, Q.-y., Huang, J.-w., Li, Y.-x., Chen, Q.-l., Yu, X.-x., & Yang, Q.-h. (2021). Effects of a nurse led web-based transitional care program on the glycemic control and quality of life post hospital discharge in patients with type 2 diabetes: a randomized controlled trial. International journal of nursing studies, 119, 103929.
Maneze, D., Everett, B., Astorga, C., Yogendran, D., & Salamonson, Y. (2016). The influence of health literacy and depression on diabetes self-management: a cross- sectional study. Journal of diabetes research, 2016.
164

Martos-Cabrera, M. B., Velando-Soriano, A., Pradas-Hernández, L., Suleiman-Martos, N., Cañadas-De la Fuente, G. A., Albendín-García, L., & Gómez-Urquiza, J. L. (2020). Smartphones and apps to control glycosylated hemoglobin (HbA1c) level in diabetes: a systematic review and meta-analysis. Journal of clinical medicine, 9(3), 693.
Mellergård, E., Johnsson, P., & Eek, F. (2020). Sociodemographic factors associated with HbA1c variability in type 2 diabetes: a prospective exploratory cohort study. BMC Endocrine Disorders, 20(1), 1-8.
Michielsen, H. J., De Vries, J., & Van Heck, G. L. (2003). Psychometric qualities of a brief self- rated fatigue measure: The Fatigue Assessment Scale. Journal of psychosomatic research, 54(4), 345-352.
Mirghani, H. O. J. A. Insomnia, Fatigue, and Some Associated Factors Among Patients with Type 2 Diabetes Mellitus, Tabuk, Saudi Arabia. International Journal of Diabetes and Endocrinology. 46, 11.16.
Mirghani, H. O. J. S. J. o. M. S. (2020). Fatigue, nonrestorative sleep and associated factors among Sudanese patients with Type 2 Diabetes: A case-control study. 15(1), 1-9.
Mohr, D. C., Hart, S. L., & Goldberg, A. (2003). Effects of treatment for depression on fatigue in multiple sclerosis. PsychosomMed, 65(4),542-547. https://doi.org/10.1097/01.psy.0000074757.11682.96
Munguía-Izquierdo, D., Segura-Jiménez, V., Camiletti-Moirón, D., Pulido-Martos, M., Alvarez- Gallardo, I. C., Romero, A., Aparicio, V. A., Carbonell-Baeza, A., & Delgado-Fernández, M. (2012). Multidimensional Fatigue Inventory: Spanish adaptation and psychometric properties for fibromyalgia patients. The Al-Andalus study. Clin Exp Rheumatol, 30(Suppl 74), 94-102.
165

Nicolau, J., Simó, R., Conchillo, C., Sanchís, P., Blanco, J., Romerosa, J., Fortuny, R., Bonet, A., & Masmiquel, L. J. J. o. e. i. (2019). Differences in the cluster of depressive symptoms between subjects with type 2 diabetes and individuals with a major depressive disorder and without diabetes. 42(8), 881-888.
Nielsen, A. B., Gannik, D., Siersma, V., & de Fine Olivarius, N. J. S. j. o. p. h. c. (2011). The relationship between HbA1c level, symptoms and self-rated health in type 2 diabetic patients. Scandinavian journal of primary health care. 29(3), 157-164.
Nikolakopoulou, A., Higgins, J. P., Papakonstantinou, T., Chaimani, A., Del Giovane, C., Egger, M., & Salanti, G. (2020). CINeMA: an approach for assessing confidence in the results of a network meta-analysis. PLoS Medicine, 17(4), e1003082.
Nkhoma, D. E., Soko, C. J., Bowrin, P., Manga, Y. B., Greenfield, D., Househ, M., Li, Y.- C., & Iqbal, U. (2021). Digital interventions self-management education for type 1 and 2 diabetes: A systematic review and meta-analysis. Computer methods and programs in biomedicine, 210, 106370.
Organization, W. H. (2009). 2008-2013 action plan for the global strategy for the prevention and control of noncommunicable diseases: prevent and control cardiovascular diseases, cancers, chronic respiratory diseases and diabetes.
Organization, W. H. (2019). WHO guideline: recommendations on digital interventions for health system strengthening: web supplement 2: summary of findings and GRADE tables.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., & Brennan, S. E. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International
166

journal of surgery, 88, 105906.
Pani, L. N., Nathan, D. M., & Grant, R. W. (2008). Clinical predictors of disease progression
and medication initiation in untreated patients with type 2 diabetes and A1C less than
7%. Diabetes care, 31(3), 386-390.
Papakonstantinou, T., Nikolakopoulou, A., Higgins, J. P., Egger, M., & Salanti, G. (2020).
Cinema: software for semiautomated assessment of the confidence in the results of
network meta‐ analysis. Campbell Systematic Reviews, 16(1), e1080.
Park, H., Park, C., Quinn, L., & Fritschi, C. (2015). Glucose control and fatigue in type 2 diabetes: the mediating roles of diabetes symptoms and distress. Journal of Advanced
Nursing, 71(7), 1650-1660.
Peimani, M., Rambod, C., Omidvar, M., Larijani, B., Ghodssi-Ghassemabadi, R., Tootee,
A., & Esfahani, E. N. (2016). Effectiveness of short message service-based intervention (SMS) on self-care in type 2 diabetes: A feasibility study. Primary care diabetes, 10(4), 251-258.
Plaveev, O., Dimitrova, Z., Ovcharova, N., Petkova, V., Stefanova, M., & Ivanova, S. J. P. P. (2006). Assessment of the decreased productivity of patients with diabetes type 2 in the Clinical Endocrynological Center Sofia, Bulgaria. Pharmacy Practice (Granada). 4(4), 204-207.
Powers, M. A., Bardsley, J., Cypress, M., Duker, P., Funnell, M. M., Hess Fischl, A., Maryniuk,
M. D., Siminerio, L., & Vivian, E. (2015). Diabetes self-management education and support in type 2 diabetes: a joint position statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of
167

Nutrition and Dietetics. Diabetes care, 38(7), 1372-1382.
Powers, M. A., Bardsley, J. K., Cypress, M., Funnell, M. M., Harms, D., Hess-Fischl, A.,
Hooks, B., Isaacs, D., Mandel, E. D., & Maryniuk, M. D. (2020). Diabetes self- management education and support in adults with type 2 diabetes: a consensus report of the American Diabetes Association, the Association of Diabetes Care & Education Specialists, the Academy of Nutrition and Dietetics, the American Academy of Family Physicians, the American Academy of PAs, the American Association of Nurse Practitioners, and the American Pharmacists Association. Diabetes care, 43(7), 1636-1649.
Putri, L. P., Mawarni, D., & Trisnantoro, L. (2020). Challenges of shifting Diabetes mellitus care from secondary-to primary-level care in urban and rural districts: a qualitative inquiry among health providers. Journal of Primary Care & Community Health, 11, 2150132720924214.
Qi, L., Liu, Q., Qi, X., Wu, N., Tang, W., & Xiong, H. (2015). Effectiveness of peer support for improving glycaemic control in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. BMC public health, 15(1), 1-11.
Razazian, N., Kazeminia, M., Moayedi, H., Daneshkhah, A., Shohaimi, S., Mohammadi, M., Jalali, R., & Salari, N. (2020). The impact of physical exercise on the fatigue symptoms in patients with multiple sclerosis: a systematic review and meta-analysis. BMC neurology, 20(1), 93. https://doi.org/10.1186/s12883-020-01654-y
Romadlon, D. S., Hasan, F., Wiratama, B. S., & Chiu, H. Y. (2021). Prevalence and risk factors of fatigue in type 1 and type 2 diabetes: A systematic review and meta‐analysis. Journal of Nursing Scholarship. 54(5), 546-553
168

Romadlon, D. S., Huang, H.-C., Chen, Y.-C., Hu, S. H., Hasan, F., Chiang Morales, M. D., Dwi Marta, O. F., Al Baqi, S., & Chiu, H.-Y. (2022). Fatigue following type 2 diabetes: Psychometric testing of the Indonesian version of the multidimensional fatigue Inventory- 20 and unmet fatigue-related needs. PLoS One, 17(11), e0278165.
Rücker, G., Schmitz, S., & Schwarzer, G. (2021). Component network meta‐analysis compared to a matching method in a disconnected network: a case study. Biometrical Journal, 63(2), 447-461.
Rücker, G., & Schwarzer, G. (2015). Ranking treatments in frequentist network meta- analysis works without resampling methods. BMC medical research methodology, 15(1), 1-9.
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., & Ogurtsova, K. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice, 157, 107843.
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K. J. D. r., & practice, c. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice. 157, 107843.
Saffari, M., Ghanizadeh, G., & Koenig, H. G. (2014). Health education via mobile text messaging for glycemic control in adults with type 2 diabetes: a systematic review and meta-analysis. Primary care diabetes, 8(4), 275-285.
169

Saffari, M., Naderi, M. K., Piper, C. N., & Koenig, H. G. (2017). Multidimensional fatigue inventory in people with hepatitis B infection. Gastroenterology Nursing, 40(5), 380-392.
Sakraida, T. J., & Weber, M. T. J. P. i. p. c. (2015). The Relationship Between Depressive Symptoms and Self-Management Behaviors in Patients With T2DM and Stage 3 CKD. Perspectives in Psychiatric Care.52(4), 273-282.
Schultz, K. (2010). CONSORT statement: updated guidelines for reporting parallel group randomised trials. BMC med, 8, 18-27.
Schumacker, R. E., & Lomax, R. G. (2004). A beginner's guide to structural equation modeling. psychology press.
Seo, Y.-M., Hahm, J.-R., Kim, T.-K., & Choi, W.-H. (2015). Factors affecting fatigue in patients with type II diabetes mellitus in Korea. Asian Nursing Research, 9(1), 60- 64.
Serdà i Ferrer, B.-C., van Roekel, E., & Lynch, B. M. (2018). The Role of Physical Activity in Managing Fatigue in Cancer Survivors. Current Nutrition Reports, 7(3), 59-69. https://doi.org/10.1007/s13668-018-0234-1
Setyowati, A., & Chung, M. H. (2021). Validity and reliability of the Indonesian version of the Pittsburgh Sleep Quality Index in adolescents. International Journal of Nursing Practice, 27(5), e12856.
Sihombing, J., Hakim, L., Andayani, T., & Irijanto, F. (2016). Validation of Indonesian Version of FACIT Fatigue Scale Questionnaire in Chronic Kidney Disease (CKD) Patients with Routine Hemodialysis. Indonesian Journal of Clinical Pharmacy, 5(4), 231-237.
170

Singh, R., & Kluding, P. M. (2013). Fatigue and related factors in people with type 2 diabetes. The Diabetes Educator, 39(3), 320-326.
Singh, R., Teel, C., Sabus, C., McGinnis, P., & Kluding, P. (2016). Fatigue in type 2 diabetes: impact on quality of life and predictors. PLoS One, 11(11), e0165652.
Skyler, J. S., Bergenstal, R., Bonow, R. O., Buse, J., Deedwania, P., Gale, E. A., Howard, B. V., Kirkman, M. S., Kosiborod, M., & Reaven, P. (2009). Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Circulation, 119(2), 351-357.
Smets, E., Garssen, B., Bonke, B. d., & De Haes, J. (1995). The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. Journal of psychosomatic research, 39(3), 315-325.
Smets, E., Garssen, B., Cull, A., & De Haes, J. (1996). Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy. British journal of cancer, 73(2), 241-245.
Soewondo, P., Ferrario, A., & Tahapary, D. L. (2013). Challenges in diabetes management in Indonesia: a literature review. Globalization and health, 9(1), 1-17.
Stein, K. D., Jacobsen, P. B., Blanchard, C. M., & Thors, C. (2004). Further validation of the multidimensional fatigue symptom inventory-short form. Journal of pain and symptom management, 27(1), 14-23.
Sudore, R. L., Karter, A. J., Huang, E. S., Moffet, H. H., Laiteerapong, N., Schenker, Y., Adams, A., Whitmer, R. A., Liu, J. Y., & Miao, Y. J. J. o. g. i. m. (2012). Symptom
171

burden of adults with type 2 diabetes across the disease course: diabetes & aging study.
27(12), 1674- 1681.
Sugita, H., Shinohara, R., Yokomichi, H., Suzuki, K., & Yamagata, Z. (2017). Effect of text
messages to improve health literacy on medication adherence in patients with type 2 diabetes mellitus: a randomized controlled pilot trial. Nagoya Journal of Medical Science, 79(3), 313.
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C., & Mbanya, J. C. (2022). IDF Diabetes Atlas: Global, regional and country- level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119.
System, I. N. H. I. (2014). Practical Guideline for Non Communicable and Chronic Disease Management (Panduan Praktis Program Pengelolaan Penyakit Kronis). In: Badan Penyelenggara Jaminan Sosial Kesehatan.
Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5). pearson Boston, MA.
Tamornpark, R., Utsaha, S., Apidechkul, T., Panklang, D., Yeemard, F., & Srichan, P. (2022). Quality of life and factors associated with a good quality of life among diabetes mellitus patients in northern Thailand. Health and Quality of Life Outcomes, 20(1), 81.
Tanaka, R., Shibayama, T., Sugimoto, K., & Hidaka, K. (2020). Diabetes self-management education and support for adults with newly diagnosed type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Diabetes research and clinical practice, 169, 108480.
172

Tang, T. S., Afshar, R., Elliott, T., Kong, J., & Gill, S. (2019). Study protocol and baseline sample characteristics: From clinic to community: Using peer support as a transition model for improving long-term diabetes-related health outcomes. Contemporary clinical trials, 79, 104-110.
Tang, T. S., Funnell, M. M., Gillard, M., Nwankwo, R., & Heisler, M. (2011). The development of a pilot training program for peer leaders in diabetes. The Diabetes Educator, 37(1), 67- 77.
Targum, S. D., & Fava, M. (2011). Fatigue as a residual symptom of depression. Innov Clin Neurosci, 8(10), 40-43.
Tian, J., & Hong, J.-S. (2012). Validation of the Chinese version of Multidimensional Fatigue Inventory-20 in Chinese patients with cancer. Supportive Care in Cancer, 20(10), 2379- 2383.
Tseng, B. Y., Billinger, S. A., Gajewski, B. J., & Kluding, P. M. (2010). Exertion fatigue and chronic fatigue are two distinct constructs in people post-stroke. Stroke, 41(12), 2908- 2912.
Tseng, B. Y., Gajewski, B. J., & Kluding, P. M. (2010). Reliability, responsiveness, and validity of the visual analog fatigue scale to measure exertion fatigue in people with chronic stroke: a preliminary study. Stroke research and treatment, 2010.
Van Rooijen, A., Rheeder, P., Eales, C., & Molatoli, H. J. S. A. J. o. P. (2002). Barriers to and expectations of performing physical activity in female subjects with type 2 diabetes. 58(1), 3-11.
Waller, K., Furber, S., Bauman, A., Allman-Farinelli, M., van den Dolder, P., Hayes, A., Facci, F., Franco, L., Webb, A., & Moses, R. (2019). DTEXT–text messaging
173

intervention to improve outcomes of people with type 2 diabetes: protocol for randomised controlled trial and cost-effectiveness analysis. BMC public health, 19(1), 1-8.
Waller, K., Furber, S., Bauman, A., Allman-Farinelli, M., van den Dolder, P., Hayes, A., Facci, F., Franco, L., Webb, A., & Moses, R. (2021). Effectiveness and acceptability of a text message intervention (DTEXT) on HbA1c and self-management for people with type 2 diabetes. A randomized controlled trial. Patient education and counseling, 104(7), 1736- 1744.
Wang, P., Huang, R., Lu, S., Xia, W., Sun, H., Sun, J., Cai, R., & Wang, S. (2015). HbA1c below 7% as the goal of glucose control fails to maximize the cardiovascular benefits: a meta- analysis. Cardiovascular diabetology, 14(1), 1-15.
Weitgasser, R., & Lopes, S. J. W. K. W. (2015). Self-reported frequency and impact of hypoglycaemic events in insulin-treated diabetic patients in Austria. Wiener Klinische Wochenschrift. 127(1), 36-44.
White, I. R. (2011). Multivariate random-effects meta-regression: updates to mvmeta. The Stata Journal, 11(2), 255-270.
Widyanata, K. A. J., & Arifin, H. (2019). DM-calendar app as a diabetes self-management education on adult type 2 diabetes mellitus: a randomized controlled trial. Journal of diabetes & Metabolic disorders, 18(2), 557-563.
Winstead-Fry, P. (1998). Psychometric assessment of four fatigue scales with a sample of rural cancer patients. Journal of Nursing Measurement, 6(2), 111-122.
Wu, I., Kee, J., Threapleton, D., Ma, R., Lam, V., Lee, E., Wong, S., & Chung, V. (2018). Effectiveness of smartphone technologies on glycaemic control in patients with type
174

2 diabetes: systematic review with meta‐analysis of 17 trials. Obesity Reviews, 19(6),
825- 838.
Yates, T., Khunti, K., Wilmot, E. G., Brady, E., Webb, D., Srinivasan, B., Henson, J., Talbot,
D., & Davies, M. J. (2012). Self-reported sitting time and markers of inflammation, insulin resistance, and adiposity. American journal of preventive medicine, 42(1), 1- 7.
Yellen, S. B., Cella, D. F., Webster, K., Blendowski, C., & Kaplan, E. (1997). Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. Journal of pain and symptom management, 13(2), 63-74.
Zhai, Y.-k., Zhu, W.-j., Cai, Y.-l., Sun, D.-x., & Zhao, J. (2014). Clinical-and cost- effectiveness of telemedicine in type 2 diabetes mellitus: a systematic review and meta-analysis. Medicine, 93(28).
Zhang, X., Yang, S., Sun, K., Fisher, E. B., & Sun, X. (2016). How to achieve better effect of peer support among adults with type 2 diabetes: a meta-analysis of randomized clinical trials. Patient education and counseling, 99(2), 186-197.
Zhang, Y., & Chu, L. (2018). Effectiveness of systematic health education model for type 2 diabetes patients. International journal of endocrinology, 2018.
Zhang, Y., Cui, Y., Shen, M., Zhang, J., Liu, B., Dai, M., Chen, L., Han, D., Fan, Y., Zeng, Y. J. D. r., & practice, c. (2020). Association of diabetes mellitus with disease severity and prognosis in COVID-19: a retrospective cohort study. Diabetes Research and Clinical Practice. 165, 108227.
Zhao, F.-F., Suhonen, R., Katajisto, J., & Leino-Kilpi, H. (2018). The association of diabetes-
175

related self-care activities with perceived stress, anxiety, and fatigue: a cross-
sectional study. Patient Preference and Adherence, 12, 1677.
Zhu, B., Quinn, L., Kapella, M. C., Bronas, U. G., Collins, E. G., Ruggiero, L., Park, C. G.,
& Fritschi, C. (2018). Relationship between sleep disturbance and self-care in adults with type 2 diabetes. Acta diabetologica, 55(9), 963-970.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top