( 您好!臺灣時間:2024/07/23 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hung-Che Kao
論文名稱(外文):Research on the Conceptual Integration Design of Information Interface and Navigation Map Interface of Advanced Driver Assistance System
指導教授(外文):Po-Ying Chu
口試委員(外文):Po-Ying Chu
外文關鍵詞:AttentionHuman-Machine InterfaceAutonomous Assistance DrivingNavigation
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
為了有效管理和利用大量資訊及產生多樣功能,智慧座艙系統(smart cockpit)應運而生。除了傳統車用娛樂系統功能外,智慧座艙還提供方便的人機互動和個人化功能。近年來,許多汽車品牌都投入大量資源發展智慧座艙,例如特斯拉Model 3、理想One、蔚來ES6、SKODA OCTAVIA COMBI 2.0和鴻海Model C等車型,顯示出智慧座艙的價值。智慧座艙的目的是減輕駕駛者的負擔,提升舒適的駕駛體驗。因此,在功能上的簡化至關重要。本研究旨在概念上簡化並融合目前市面上車型中獨立存在的ADAS資訊介面和導航介面,以提高駕駛者的專注力,減少負擔和事故風險,達到行車安全的目標。
為了實現行車安全的目標,研究流程包括對自駕車、智慧座艙介面和駕駛視覺進行文獻探討,比較市場上車型的中控介面,並設計調查問卷。該問卷針對駕駛經驗半年以上的人群進行調查和歸納。根據調查結果,建立設計概念和準則,設計數個車用界面樣本和道路環境樣本。使用電腦和平板作為實驗設備,使用City Car Driving模擬駕駛遊戲的預錄影片進行實驗,進行界面樣本比較和數據收集。使用NASA-TLX量表和李克特量表收集數據,分析注意力、辨識度和易讀性。預期結果能提升駕駛者的注意力,減輕負擔並降低事故發生的機率,以達到行車安全的目的。
Internet of Things (IoT) technology is a crucial derivative of today's networking landscape, widely applied in various domains such as personal life, transportation, business management, and government operations. One of its significant applications is in the field of connected vehicles, which has garnered significant attention in recent years. Despite the active development of advanced autonomous driving systems by various companies, most vehicles in the market still operate at Level 2 autonomy, with a considerable journey remaining towards achieving fully autonomous driving. The limited sensing range and blind spots of sensors highlight the potential of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication, provided by IoT technology, to enhance situational awareness and information sharing, thereby achieving improved performance and diversified functionalities.
To effectively manage and leverage the vast amount of information and generate diversified functionalities, the concept of the smart cockpit system has emerged. Beyond traditional in-vehicle entertainment functions, a smart cockpit provides convenient human-machine interaction and personalized features. In recent years, many automotive brands have invested substantial resources in developing smart cockpit systems, exemplified by models such as Tesla Model 3, NIO ES6, IDEAL ONE, SKODA OCTAVIA COMBI 2.0, and Foxconn Model C. These examples underscore the value of smart cockpit systems. The primary objective of a smart cockpit is to alleviate the driver's burden and enhance the driving experience by simplifying functions. This study aims to conceptually streamline and integrate the separate Advanced Driver Assistance System (ADAS) information interface and navigation interface found in current vehicle models, aiming to improve driver focus, reduce cognitive load, lower accident risks, and achieve the goal of road safety.
To achieve road safety goals, the research process involves a literature review of self-driving vehicles, smart cockpit interfaces, and driver vision. It compares central control interfaces of models available in the market and designs a survey questionnaire. The survey is conducted and summarized among drivers with more than six months of driving experience. Based on the survey results, design concepts and criteria are established, leading to the creation of several vehicle interface samples and road environment samples. Employing computers and tablets as experimental devices,pre-recorded videos from the City Car Driving simulation game are utilized to perform comparisons and data collection. Data is collected using NASA-TLX and Likert scales to analyze attention, recognizability, and readability. The anticipated results are expected to enhance driver attention, alleviate cognitive load, and decrease the likelihood of accidents, ultimately achieving the objective of road safety.
誌謝 i
摘要 ii
Abstract iii
目次 v
表次 vi
圖次 vii
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 4
第三節 研究流程 5
第四節 研究範圍與限制 7
第貳章 文獻探討 8
第一節 自動駕駛車輛 8
2.1.1自動駕駛車輛定義 8
2.1.2發展史 10
2.1.3產業現況 11
第二節 智慧座艙 12
2.2.1車用人機介面 12
第三節 駕駛視覺與注意力 13
2.3.1視覺注意力 13
2.3.2感知反應時間 14
2.3.3眼動追蹤 16
第四節 駕駛模擬 18
2.4.1駕駛模擬定義 18
第參章 研究方法 20
第一節 實驗流程與架構 20
第二節 前導研究 先進駕駛輔助和導航介面使用經驗調查 21
3.2.1受測者 21
3.2.2問卷設計 21
第三節 正式實驗 行車介面概念整合調查 22
3.3.1受測者 22
3.3.2實驗設計 23
3.3.3環境設定 25
3.3.4實驗流程 26
3.3.5實驗限制與範圍 26
第肆章 研究結果與討論 28
第一節前導研究 先進駕駛輔助和導航介面使用經驗調查結果 28
4.1.1受測者基本資料收集結果 28
4.1.2問卷調查資料收集結果 28
4.1.2問卷調查資料收集結果 28
第二節 正式實驗 行車介面概念整合之調查實驗結果 30
4.2.1受測者基本資料收集結果 30
4.2.2第一部分實驗數據收集結果:實驗一與實驗二的眼動數據 30
4.2.3第二部分問卷量表:NASA-TLX量表 32
4.2.4第三部分問卷量表:李克特量表 35
第伍章 結論與建議 37
第一節 結論 37
第二節 未來建議 37
參考文獻 39
英文部份 39
中文部份 40
網路部份 40
附錄一 前導問卷 42
附錄二 正式實驗問卷 45
1. American Association of State Highway and Transportation Officials. (2018). A policy on. geometric design of highways and streets, 2018.
2. Edouard Da Silva. LINE TODAY. (2022.09). Retrieved from https://today.line.me/tw/v2/article/GgGY2aL
3. Hannah F. Chua, Julie E. Boland, Richard E. Nisbett. 2005. Cultural variation in eye movements during scene perception. PNAS, 102(35), 12629--12633.
4. Land, M., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28(11), 1311–1328. https://doi.org/10.1068/p2935
5. Neuman, T. R. (1989). New approach to design for stopping sight distance. Transportation Research Record, 1208, 14–22.
6. Rezaei, M. (2020, October 25). Autonomous Vehicles. In Encyclopedia. https://encyclopedia.pub/entry/2787
7. Richardson, E. D., & Marottoli, R. A. (2003). Visual attention and driving behaviors among community-living older persons. The journals of gerontology. Series A, Biological sciences and medical sciences, 58(9), M832–M836. https://doi.org/10.1093/gerona/58.9.m832
8. SAE International(2019). Retrieved from https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
9. Sundstedt, Veronica & Bernhard, Matthias & Stavrakis, Efstathios & Reinhard, Erik & Wimmer, Michael. (2013). Visual Attention and Gaze Behavior in Games: An Object-Based Approach. In Game analytics (pp.543-583). Springer.
10. Wittmann, M., Kiss, M., Gugg, P., Steffen, A., Fink, M., Pöppel, E., & Kamiya, H. (2006). Effects of display position of a visual in-vehicle task on simulated driving. Applied ergonomics, 37(2), 187–199. https://doi.org/10.1016/j.apergo.2005.06.002

2.李仁豪(2000)。視覺注意力能否分裂?。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/v9v4a5。
3.黃士軒(2013)。駕駛注意力分配模式。﹝博士論文。國立交通大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4k4636。

1.CARBUZZ (2012). 2012 Tesla Model S Interior Photos. Available at: https://carbuzz.com/cars/tesla/model-s/2012/photos-interior
2.Gazepoint (2016). GP3 Eye Tracker. Available at: https://www.gazept.com/product/gazepoint-gp3-eye-tracker/
3.SAE (2021). SAE Levels of Driving Automation Refined for Clarity and International Audience. Available at: https://www.sae.org/blog/sae-j3016-update
4.Wikipedia (2017). Category:Heat maps. Available at: https://commons.wikimedia.org/wiki/Category:Heat_maps
5.Wikipedia (2010). Driving simulator. Available at: https://en.wikipedia.org/wiki/Driving_simulator
6.Wikipedia (2013). Houdina Radio Control. Available at: https://en.wikipedia.org/wiki/Houdina_Radio_Control
7.Wikipedia (2022). VaMP. Available at: https://en.wikipedia.org/wiki/VaMP
8.鴻海科技集團(2022)。智能電動車開放平台。取自 https://www.foxconn.com/zh-tw/products-and-services/event-highlights/strategy-blueprint/electric-vehicle-platform
9.Tesla台灣(2022)。Tesla Model 3。取自 https://www.tesla.com/zh_tw/model3
10.劉家岳(2022)。鴻海10月不只有百萬內電動車Model C 神秘純電貨卡也將同場發表。地球黃金線。取自 https://cars.tvbs.com.tw/car-news/56589
12.wukunyan(2019)。Tesla Model 3 颱風天趴趴走,解鎖自動駕駛封印外加 3/X 比較心得。DDCAR。取自 https://www.ddar.com.tw/article/602
第一頁 上一頁 下一頁 最後一頁 top