跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張詠昀
研究生(外文):Yong-yun Chang
論文名稱:應用於直接甲酸燃料電池的鈀鉍/多壁碳奈米管之合成與特性研究
論文名稱(外文):Synthesis and Characterization of PdBi/AO-MWCNTs for Direct Formic Acid Fuel Cells
指導教授:邱郁菁
指導教授(外文):Yuh-Jing Chiou
口試委員:邱郁菁
口試委員(外文):Yuh-Jing Chiou
口試日期:2023-07-07
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程與生物科技學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:85
中文關鍵詞:抗壞血酸甲酸燃料電池
外文關鍵詞:BismuthPalladiumAscorbic acid.Fuel cellsFormic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈀觸媒為應用在直接甲酸燃料電池DFAFC中,催化特性良好的觸媒,但其價格昂貴且穩定性不足。本研究以不同製程方式合成具固溶相的鈀鉍/多壁奈米碳管陽極觸媒,並探討在甲酸燃料中的電催化活性。
本研究嘗試不同合成方式合成鈀鉍金屬催化劑,利用抗壞血酸能成功得到鈀鉍固溶相的奈米複合顆粒。合成出四種金屬比例催化劑為Pd/AO-MWCNTs、Pd1Bi1/AO-MWCNTs、Pd1Bi3/AO-MWCNTs及Pd3Bi1/AO-MWCNTs。另外也探討摻雜氮(N)對AO-MWCNTs載體表面改質的效果。以XRD、ICP-OES、Raman、SEM檢測其基本特性。以電化學活性面積(ECSA)、循環伏安法(CV)和計時安培分析法(CA)檢測電催化特性。
實驗結果顯示,碳管酸洗前後及摻雜氮的缺陷值(拉曼分析中的D/G比值)各為0.45、0.71和0.48。電子顯微鏡得到所合成的鈀基奈米顆粒,其平均粒徑約為7.0nm。Pd1Bi1/ AO-MWCNTs的電化學活性表面積約有22.5cm2 gPd-1,在循環伏安實驗中顯示是以間接路徑在甲酸溶液裡面反應。Pd1Bi1/ AO-MWCNTs催化甲酸反應在電壓0.79V時有最高電流600 mA mgPd-1。而Pd3Bi1/AO-MWCNTs和Pd3Bi1/N-AO-MWCNTs在甲酸溶液裡面的反應路徑是以直接路徑為主。Pd3Bi1/N-AO-MWCNTs在計時安培分析中,經過三小時後電流密度為1.23 (mA/mgPd)為所有觸媒中穩定性最佳。綜合上述檢測,經由抗壞血酸所合成的Pd3Bi1/N-AO-MWCNTs,是本研究最好的甲酸電氧化催化劑。
Palladium-based catalysts have good catalytic properties used in Direct Formic Acid Fuel Cells, but they are expensive and lack stability. This study synthesizes palladium-bismuth/multi-walled carbon nanotube anode catalysts with solid solution phases using different fabrication methods and investigates their electrocatalytic activity in DFAFC.
In this research, various synthesis methods for PdBi metal catalysts were attempted, successfully obtaining PdBi solid solution-phase nano-composites using ascorbic acid. Four types of metal ratio catalysts were synthesized: Pd/AO-MWCNTs, Pd1Bi1/AO-MWCNTs, Pd1Bi3/AO-MWCNTs, and Pd3Bi1/AO-MWCNTs. The effect of nitrogen (N) doping on the surface modification of AO-MWCNTs carrier was also explored. Basic characteristics were examined using XRD, ICP-OES, Raman, and SEM. Electrocatalytic properties were evaluated through electrochemical active surface area (ECSA), cyclic voltammetry (CV), and chronoamperometry (CA) analyses.
Experimental results showed defect values (D/G ratio in Raman analysis) of 0.45 before and after carbon nanotube acid treatment and 0.71 with nitrogen doping. SEM revealed the synthesized palladium-based nano-particles with an average size of approximately 7.0 nm. Pd1Bi1/AO-MWCNTs exhibited an ECSA of around 22.5 cm2 gPd-1 and demonstrated an indirect pathway in the formic acid solution in CV. Pd1Bi1/AO-MWCNTs achieved the highest current density of 600 mA mgPd-1 at a voltage of 0.79 V in formic acid oxidation. In contrast, Pd3Bi1/AO-MWCNTs and Pd3Bi1/N-AO-MWCNTs mainly followed a direct pathway in the formic acid solution. Pd3Bi1/N-AO-MWCNTs displayed the best stability, with a current density of 1.23 (mA/mgPd) after three hours in CA. In summary, Pd3Bi1/N-AO-MWCNTs synthesized with ascorbic acid proved to be the most effective catalyst for formic acid electrooxidation in this study.
致謝 i
Abstract ii
摘要 iii
Table of Contents iv
List of Figures vi
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Current Situation of Renewable Energy 3
2.2 Fuel Cells 4
2.3 Direct formic acid fuel cell 6
2.4 Multi-Walled Carbon Nanotubes (MWNTs) 8
2.5 Metal catalyst 11
2.6 Pd-Bi bimetallic catalysts 17
2.7 N-doped-AO-MWCNTs 19
Chapter 3 Experimental 21
3.1 Materials 21
3.2 Electrocatalyst Preparation 22
3.2.1 Acid-oxidation Treatment of MWCNTs 22
3.2.2 Preparation of N-doped AO-MWCNTs 23
3.2.3 Preparation of PdBi/AO-MWCNTs catalysts by NaBH4 synthesis method 24
3.2.4 Preparation of PdBi/AO-MWCNTs by Synchrotron Radiation Photo-reduction 25
3.2.5 Preparation of PdBi/AO-MWCNTs and PdBi/N-AO-MWCNTs catalysts by Ascorbic acid synthesis method 26
3.3 Specimen Characteristics 27
3.3.1 Raman Scattering Spectroscopy (RS) 27
3.3.2 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) 28
3.3.3 X-ray Diffraction analysis (XRD) 29
3.3.4 Field Emission Scanning Electron Microscope (FESEM) 30
3.3.5 Electrocatalytical performance 31
Chapter 4 Results and Discussion 33
4.1 Raman spectroscopy 33
4.2 X-ray Diffraction (XRD) 36
4.2.1 NaBH4 synthesis method 36
4.2.2 Synchrotron Radiation Photoreduction 38
4.2.3 Ascorbic acid synthesis method 40
4.3 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 45
4.4 X-ray Photoelectron Spectroscopy (XPS) 46
4.5 Field Emission Scanning Electron Microscope (FESEM) 48
4.6 Transmission electron microscope (TEM) 56
4.7 Electrocatalytical Analysis 60
4.7.1 Electrochemical surface area measurements (ECSA) 60
4.7.2 Cyclic voltammetry Measurements (CV) 66
4.7.3 Chronoamperometry Measurements (CA) 74
Chapter 5 Conclusion 78
References 79
1. Marinšek, M., M. Šala and B. Jančar. "A study towards superior carbon nanotubes-supported pd-based catalysts for formic acid electro-oxidation: Preparation, properties and characterisation." Journal of power sources 235 (2013): 111-16.
2. Uhm, S., H. J. Lee and J. Lee. "Understanding underlying processes in formic acid fuel cells." Physical Chemistry Chemical Physics 11 (2009): 9326-36.
3. Baik, S., J. Han, J. Kim and Y. Kwon. "Effect of deactivation and reactivation of palladium anode catalyst on performance of direct formic acid fuel cell (dfafc)." International journal of hydrogen energy 36 (2011): 14719-24.
4. Kavian, R., S.-I. Choi, J. Park, T. Liu, H.-C. Peng, N. Lu, J. Wang, M. J. Kim, Y. Xia and S. W. Lee. "Pt–ni octahedral nanocrystals as a class of highly active electrocatalysts toward the hydrogen evolution reaction in an alkaline electrolyte." Journal of Materials Chemistry A 4 (2016): 12392-97.
5. Jiang, H., L. Liu, K. Zhao, Z. Liu, X. Zhang and S. Hu. "Effect of pyridinic-and pyrrolic-nitrogen on electrochemical performance of pd for formic acid electrooxidation." Electrochimica Acta 337 (2020): 135758.
6. Zalineeva, A., A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. v. Baranton, C. Coutanceau and P. B. Atanassov. "Self-supported pd x bi catalysts for the electrooxidation of glycerol in alkaline media." Journal of the American Chemical Society 136 (2014): 3937-45.
7. Zhan, W., L. Ma, M. Gan and F. Xie. "Ultra-fine bimetallic fecop supported by n-doped mwcnts pt-based catalyst for efficient electrooxidation of methanol." Applied Surface Science 585 (2022): 152621.
8. Chen, W. and Y. Lei. "The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression." Renewable energy 123 (2018): 1-14.
9. Zhu, D., S. M. Mortazavi, A. Maleki, A. Aslani and H. Yousefi. "Analysis of the robustness of energy supply in japan: Role of renewable energy." Energy Reports 6 (2020): 378-91.
10. Su, C.-W., K. Khan, M. Umar and T. Chang. "Renewable energy in prism of technological innovation and economic uncertainty." Renewable energy 189 (2022): 467-78.
11. Graus, W. and E. Worrell. "Trend in efficiency and capacity of fossil power generation in the eu." Energy Policy 37 (2009): 2147-60.
12. Mooney, T. A., M. H. Andersson and J. Stanley. "Acoustic impacts of offshore wind energy on fishery resources." Oceanography 33 (2020): 82-95.
13. Boretti, A. "Integration of solar thermal and photovoltaic, wind, and battery energy storage through ai in neom city." Energy and AI 3 (2021): 100038.
14. Cigolotti, V., M. Genovese and P. Fragiacomo. "Comprehensive review on fuel cell technology for stationary applications as sustainable and efficient poly-generation energy systems." Energies 14 (2021): 4963.
15. Malik, V., S. Srivastava, M. K. Bhatnagar and M. Vishnoi. "Comparative study and analysis between solid oxide fuel cells (sofc) and proton exchange membrane (pem) fuel cell–a review." Materials Today: Proceedings 47 (2021): 2270-75.
16. Cudjoe, D., B. Zhu and H. Wang. "Towards the realization of sustainable development goals: Benefits of hydrogen from biogas using food waste in china." Journal of Cleaner Production 360 (2022): 132161.
17. Caglar, A., M. S. Cogenli, A. B. Yurtcan and H. Kivrak. "Effective carbon nanotube supported metal (m= au, ag, co, mn, ni, v, zn) core pd shell bimetallic anode catalysts for formic acid fuel cells." Renewable energy 150 (2020): 78-90.
18. Safdar Hossain, S., J. Saleem, M. Mudassir Ahmad Alwi, F. A. Al‐Odail and M. Mozahar Hossain. "Recent advances in anode electrocatalysts for direct formic acid fuel cells–part i–fundamentals and pd based catalysts." The Chemical Record 22 (2022): e202200045.
19. Jałowiecka, M., Z. Bojarska, A. Małolepszy and Ł. Makowski. "Mass transport enhancement in direct formic acid fuel cell with a novel channel design." Chemical Engineering Journal 451 (2023): 138474.
20. Mardini, N. and Y. Bicer. "Direct synthesis of formic acid as hydrogen carrier from co2 for cleaner power generation through direct formic acid fuel cell." International journal of hydrogen energy 46 (2021): 13050-60.
21. Aldosari, O. "Hydrogen storage in formic acid as a renewable energy source using heterogeneous catalysis." Turkish Journal of Chemistry 43 (2019): 995-1005.
22. Cheng, S., G. Zhao, M. Gao, Y. Shi, M. Huang and M. Marefati. "A new hybrid solar photovoltaic/phosphoric acid fuel cell and energy storage system; energy and exergy performance." International journal of hydrogen energy 46 (2021): 8048-66.
23. Schiffer, Z. J., S. Biswas and K. Manthiram. "Ammonium formate as a safe, energy-dense electrochemical fuel ionic liquid." ACS Energy Letters 7 (2022): 3260-67.
24. Tang, H., K. Geng, L. Wu, J. Liu, Z. Chen, W. You, F. Yan, M. D. Guiver and N. Li. "Fuel cells with an operational range of–20° c to 200° c enabled by phosphoric acid-doped intrinsically ultramicroporous membranes." Nature Energy 7 (2022): 153-62.
25. Luo, Y., Y. Wu, B. Li, T. Mo, Y. Li, S.-P. Feng, J. Qu and P. K. Chu. "Development and application of fuel cells in the automobile industry." Journal of Energy Storage 42 (2021): 103124.
26. Berretti, E., M. Longhi, P. Atanassov, D. Sebastián, C. L. Vecchio, V. Baglio, A. Serov, A. Marchionni, F. Vizza and C. Santoro. "Platinum group metal-free fe-based (fenc) oxygen reduction electrocatalysts for direct alcohol fuel cells." Current Opinion in Electrochemistry 29 (2021): 100756.
27. Singh, N. P., V. Gupta and A. P. Singh. "Graphene and carbon nanotube reinforced epoxy nanocomposites: A review." Polymer 180 (2019): 121724.
28. Sivakami, A., S. Bagyalakshmi, K. Balamurugan and N. Iskhan. "Graphene-carbon nanotubes nanocomposite modified electrochemical sensors for toxic chemicals." Graphene-Based Electrochemical Sensors for Toxic Chemicals 82 (2020): 211-42.
29. Wang, P., Y. Zheng, T. Inoue, R. Xiang, A. Shawky, M. Watanabe, A. Anisimov, E. I. Kauppinen, S. Chiashi and S. Maruyama. "Enhanced in-plane thermal conductance of thin films composed of coaxially combined single-walled carbon nanotubes and boron nitride nanotubes." ACS nano 14 (2020): 4298-305.
30. Gupta, N., S. M. Gupta and S. Sharma. "Carbon nanotubes: Synthesis, properties and engineering applications." Carbon Letters 29 (2019): 419-47.
31. Shen, C.-H., C.-H. Chuang, Y.-J. Gu, W. H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang and C.-W. Kung. "Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance." ACS Applied Materials & Interfaces 13 (2021): 16418-26.
32. Rauti, R., M. Musto, S. Bosi, M. Prato and L. Ballerini. "Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come?" Carbon 143 (2019): 430-46.
33. Bolade, O. P., A. B. Williams and N. U. Benson. "Green synthesis of iron-based nanomaterials for environmental remediation: A review." Environmental Nanotechnology, Monitoring & Management 13 (2020): 100279.
34. Salah, L. S., N. Ouslimani, D. Bousba, I. Huynen, Y. Danlée and H. Aksas. "Carbon nanotubes (cnts) from synthesis to functionalized (cnts) using conventional and new chemical approaches." Journal of Nanomaterials 2021 (2021): 1-31.
35. Arefi-Oskoui, S., A. Khataee, S. J. Behrouz, V. Vatanpour, S. H. Gharamaleki, Y. Orooji and M. Safarpour. "Development of mos2/o-mwcnts/pes blended membrane for efficient removal of dyes, antibiotic, and protein." Separation and Purification Technology 280 (2022): 119822.
36. Jun, L. Y., N. Mubarak, L. S. Yon, C. H. Bing, M. Khalid and E. Abdullah. "Comparative study of acid functionalization of carbon nanotube via ultrasonic and reflux mechanism." Journal of environmental chemical engineering 6 (2018): 5889-96.
37. Zhang, X., J. Zhu, C. S. Tiwary, Z. Ma, H. Huang, J. Zhang, Z. Lu, W. Huang and Y. Wu. "Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation." ACS Applied Materials & Interfaces 8 (2016): 10858-65.
38. Rößner, L. and M. Armbrüster. "Electrochemical energy conversion on intermetallic compounds: A review." ACS Catalysis 9 (2019): 2018-62.
39. Matin, M. A., J.-H. Jang and Y.-U. Kwon. "Pdm nanoparticles (m = ni, co, fe, mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions." Journal of power sources 262 (2014): 356-63.
40. Xu, C., Y. Liu, J. Wang, H. Geng and H. Qiu. "Nanoporous pdcu alloy for formic acid electro-oxidation." Journal of power sources 199 (2012): 124-31.
41. Wang, R., H. Wang, X. Wang, S. Liao, V. Linkov and S. Ji. "Effect of the structure of ni nanoparticles on the electrocatalytic activity of ni@ pd/c for formic acid oxidation." International journal of hydrogen energy 38 (2013): 13125-31.
42. Hong, P., F. Luo, S. Liao and J. Zeng. "Effects of pt/c, pd/c and pdpt/c anode catalysts on the performance and stability of air breathing direct formic acid fuel cells." International journal of hydrogen energy 36 (2011): 8518-24.
43. Morales-Acosta, D., M. Morales-Acosta, L. Godinez, L. Álvarez-Contreras, S. Duron-Torres, J. Ledesma-García and L. Arriaga. "Pdco supported on multiwalled carbon nanotubes as an anode catalyst in a microfluidic formic acid fuel cell." Journal of power sources 196 (2011): 9270-75.
44. Wang, X., Y. Tang, Y. Gao and T. Lu. "Carbon-supported pd–ir catalyst as anodic catalyst in direct formic acid fuel cell." Journal of power sources 175 (2008): 784-88.
45. Gong, Y., X. Liu, Y. Gong, D. Wu, B. Xu, L. Bi, L. Y. Zhang and X. Zhao. "Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation." Journal of colloid and interface science 530 (2018): 189-95.
46. Yang, S., J. Yang, Y. Chung and Y. Kwon. "Pdbi bimetallic catalysts including polyvinylpyrrolidone surfactant inducing excellent formic acid oxidation reaction and direct formic acid fuel cell performance." International journal of hydrogen energy 42 (2017): 17211-20.
47. Bai, Z., L. Yang, J. Zhang, L. Li, J. Lv, C. Hu and J. Zhou. "Solvothermal synthesis and characterization of pd–rh alloy hollow nanosphere catalysts for formic acid oxidation." Catalysis Communications 11 (2010): 919-22.
48. Zhang, X.-J., J.-M. Zhang, P.-Y. Zhang, Y. Li, S. Xiang, H.-G. Tang and Y.-J. Fan. "Highly active carbon nanotube-supported ru@ pd core-shell nanostructure as an efficient electrocatalyst toward ethanol and formic acid oxidation." Molecular Catalysis 436 (2017): 138-44.
49. Li, J., J. Chen, Q. Wang, W.-B. Cai and S. Chen. "Controllable increase of boron content in b-pd interstitial nanoalloy to boost the oxygen reduction activity of palladium." Chemistry of Materials 29 (2017): 10060-67.
50. Luo, F., Q. Zhang, X. Yu, S. Xiao, Y. Ling, H. Hu, L. Guo, Z. Yang, L. Huang and W. Cai. "Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting." Angewandte Chemie International Edition 57 (2018): 14862-67.
51. Shang, L., B. Zeng and F. Zhao. "Fabrication of novel nitrogen-doped graphene–hollow aupd nanoparticle hybrid films for the highly efficient electrocatalytic reduction of h2o2." ACS Applied Materials & Interfaces 7 (2015): 122-28.
52. Xu, H., B. Yan, K. Zhang, J. Wang, S. Li, C. Wang, Y. Du, P. Yang, S. Jiang and S. Song. "N-doped graphene-supported binary pdbi networks for formic acid oxidation." Applied Surface Science 416 (2017): 191-99.
53. Lee, Y.-L. "The Synthesis and Characterization of Nano Noble Metals/WO3/MWCNTs Hybrid Electrocatalysts." Unpublished doctoral dissertation, Tatung University, Taipei. (2013).
54. Chang, C.-L. "Synthesis and Characterization of Palladium and Platinum Catalysts Supported on Metal Oxide Modified Multi-Walled Carbon Nanotubes." Unpublished doctoral dissertation, Tatung University, Taipei. (2013).
55. Wu, G.-H. "Electro Catalysis Property of Hybrid Metal/Oxide/Multi-Walled Carbon Nanotubes Nanomaterial for Fuel Cell Applications." Unpublished doctoral dissertation, Tatung University, Taipei. (2013).
56. Hsu, Y. "Synthesis and Characterization of Nano Hybrid AuPd/ZrO2/MWCNTs Electrocatalysts." Unpublished doctoral dissertation, Tatung University, Taipei. (2014).
57. Liu, G.-J. "Synthesis and Characterization of Nano-hybrid Noble Metals/Oxides/MWCNTs Electrocatalysts." Unpublished doctoral dissertation, Tatung University, Taipei. (2017).
58. Lin, C.-H. "Synthesis and Characterization of Nano-hybrid Noble Metals/Oxides/MWCNTs Electrocatalysts." Unpublished doctoral dissertation, Tatung University, Taipei. (2017).
59. Chung, M.-Y. "Electrocatalytical Property of Hybrid AuPd/Polyaniline/AO-MWCNTs Nanomaterials for Direct Formic Acid Fuel Cells." Unpublished doctoral dissertation, Tatung University, Taipei. (2016).
60. Yang, H. "Electrocatalytical Property of Hybrid AuPd/Palladium doped Polyaniline/ AO-MWCNTs Nanomaterials for Direct Formic Acid Fuel Cells." Unpublished doctoral dissertation, Tatung University, Taipei. (2017).
61. Liang, C.-C. "Synthesis and Characterization of Ni Modified Pd based Electrocatalysts." Unpublished doctoral dissertation, Tatung University, Taipei. (2020).
62. Lewis, S. A., J. P. Wilburn, M. S. Wellons, D. E. Cliffel and C. M. Lukehart. "Carbon‐supported aupt and aupd bimetallic nanocomposites as formic acid electrooxidation catalysts." physica status solidi (a) 212 (2015): 2903-09.
63. Bulushev, D. A., L. G. Bulusheva, S. Beloshapkin, T. O’Connor, A. V. Okotrub and K. M. Ryan. "Pd clusters supported on amorphous, low-porosity carbon spheres for hydrogen production from formic acid." ACS Applied Materials & Interfaces 7 (2015): 8719-26.
64. Mikołajczuk, A., A. Borodzinski, P. Kedzierzawski, L. Stobinski, B. Mierzwa and R. Dziura. "Deactivation of carbon supported palladium catalyst in direct formic acid fuel cell." Applied Surface Science 257 (2011): 8211-14.
65. Rehacek, V., I. Hotovy, M. Marton, M. Mikolasek, P. Michniak, A. Vincze, A. Kromka and M. Vojs. "Voltammetric characterization of boron-doped diamond electrodes for electroanalytical applications." Journal of Electroanalytical Chemistry 862 (2020): 114020.
66. Ouyang, R., W. Zhang, S. Zhou, Z.-L. Xue, L. Xu, Y. Gu and Y. Miao. "Improved bi film wrapped single walled carbon nanotubes for ultrasensitive electrochemical detection of trace cr (vi)." Electrochimica Acta 113 (2013): 686-93.
67. Miao, Y., Z. Yang, X. Liu, L. Xu, L. Ouyang, Y. Gu, H. Chang and R. Ouyang. "Self-assembly of biiii ultrathin layer on pt surface for non-enzymatic glucose sensing." Electrochimica Acta 111 (2013): 621-26.
68. Bauskar, A. S. and C. A. Rice. "Spontaneously bi decorated carbon supported pt nanoparticles for formic acid electro-oxidation." Electrochimica Acta 93 (2013): 152-57.
69. Ritter, U., N. Tsierkezos, Y. I. Prylutskyy, L. Y. Matzui, V. Gubanov, M. Bilyi and M. Davydenko. "Structure–electrical resistivity relationship of n-doped multi-walled carbon nanotubes." Journal of Materials Science 47 (2012): 2390-95.
70. Liu, X., L. Fan, Y. Wang, W. Zhang, H. Ai, Z. Wang, D. Zhang, H. Jia and C. Wang. "Nanofiber-based sm0. 5sr0. 5co0. 2fe0. 8o3-δ/n-mwcnt composites as an efficient bifunctional electrocatalyst towards oer/orr." International journal of hydrogen energy 48 (2023): 15555-65.
71. Zhou, N., N. Wang, Z. Wu and L. Li. "Probing active sites on metal-free, nitrogen-doped carbons for oxygen electroreduction: A review." Catalysts 8 (2018): 509.
72. Lazar, P., R. Mach and M. Otyepka. "Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in n-doped graphene." The Journal of Physical Chemistry C 123 (2019): 10695-702.
73. Mateos, M., R. Meunier-Prest, O. Heintz, F. Herbst, J.-M. Suisse and M. Bouvet. "Comprehensive study of poly (2, 3, 5, 6-tetrafluoroaniline): From electrosynthesis to heterojunctions and ammonia sensing." ACS Applied Materials & Interfaces 10 (2018): 19974-86.
電子全文 電子全文(網際網路公開日期:20250905)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊