跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊善誼
研究生(外文):SHAN-YI YANG
論文名稱:從黏土—氧化鋁(α−Al₂O₃)−碳化矽(SiC)製備莫來石陶瓷複合材料之研究
論文名稱(外文):Preparation of Mullite Ceramic Composite from Clay-Aluminum Oxide (α-Al₂O₃) - Silicon Carbide (SiC)
指導教授:林永仁林永仁引用關係
指導教授(外文):Yung-Jen Lin
口試委員:林永仁
口試委員(外文):Yung-Jen Lin
口試日期:2023-07-25
學位類別:碩士
校院名稱:大同大學
系所名稱:機械與材料工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:93
中文關鍵詞:莫來石-碳化矽陶瓷黏土氧化鋁(α−Al2O3)反應燒結碳化矽莫來石
外文關鍵詞:α-Al2O3 (aluminum oxide)silicon carbidemullitereaction sinteringClaymullite-silicon carbide ceramics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由在黏土(石英為主、含有部分高嶺土)中添加不同比例的氧化鋁(α−Al2O3),在不同氣氛中利用高溫進行燒結,並外加固定比例的碳化矽(SiC),在還原氣氛中利用高溫進行燒結,以製備莫來石陶瓷複合材料,並探討其燒結性質、相組成變化和微觀結構演變以及硬度等特性。
純黏土經1200℃空氣燒結後達到最高緻密度,開孔隙率約為2.1%,主要相成分為石英。在1300℃時,有Tridymite相出現,1400℃燒結後的坯體其主要結晶相為莫來石相,然而,在1500℃時則完全形成玻璃相,無任何結晶相。在還原氣氛燒結中達到最高緻密度所需的燒結溫度下降至1100℃,主要相仍為石英,但有Tridymite相產生,有無外加碳化矽的坯體燒結情形皆相同。在≥1350℃燒結後的坯體其主要結晶相為莫來石相,1500℃因受到還原氣氛影響,其主要結晶相為莫來石相,而非全部轉變為玻璃相。外加碳化矽的坯體經1200℃到1500℃還原燒結後其體密度皆較未外加碳化矽的坯體高。
黏土中的Quartz相含量是緻密化及相變化為主要影響因素。當黏土中添加α−Al₂O₃含量≤40 wt.%,經1300℃空氣燒結後可得最高緻密度,並以莫來石相為主,次要為Quartz相、α−Al₂O₃相。當α−Al₂O₃含量≥50 wt.%時,因為α−Al₂O₃相含量增加,在≥1350℃空氣燒結後的坯體以莫來石相為主,次要為α−Al₂O₃相、Quartz相,α−Al₂O₃相存在使坯體緻密度下降。在還原氣氛燒結中,因還原氣氛產生Tridymite相,以莫來石相為主的坯體中,莫來石相含量相對減少,達到最緻密的溫度提高。外加碳化矽的坯體在還原氣氛中燒結,達相當緻密所需的燒結溫度較未外加碳化矽的坯體低,且碳化矽添加使以莫來石相為主的坯體,其所需的燒結溫度提高。另外,從微觀結構圖中得知,隨著燒結溫度升高,莫來石生成量增加;α−Al₂O₃含量增加≥50 wt.%,其柱狀晶粒轉變為等軸狀晶粒;在還原氣氛中燒結,有較小(0.1μm)的莫來石晶粒產生。
機械特性方面,黏土-氧化鋁坯體在還原氣氛中燒結可獲得最高的硬度值,其值較空氣中燒結的坯體高,也較含碳化矽的坯體高,推測可能是因為還原燒結反應時產生晶體內部空孔缺陷,而提高硬度之故。
The study involves the addition of different proportions of aluminum oxide (α-Al2O3) to clay (primarily quartz with some kaolin content), followed by high-temperature sintering in different atmospheres. Additionally, a fixed silicon carbide (SiC) ratio is added and sintered in a reducing atmosphere to prepare mullite ceramic composites. It investigates sintering properties, changes in phase composition, microstructural evolution, and hardness among other characteristics of mullite ceramic composites.
Pure clay achieves its highest density after sintering at 1200°C in air, with a pore volume of approximately 2.1%. The main phase is quartz. At 1300°C, the tridymite phase appears, and after sintering at 1400°C, the main crystalline phase in the body is mullite. However, at 1500°C, the body entirely transforms into a glassy phase without any crystalline phase. Sintering in a reducing atmosphere achieves the highest density at a reduced temperature of 1100°C, and the main phase remains quartz, with tridymite phase formation. The sintering behavior is the same with or without added silicon carbide. Samples sintered at ≥1350°C in the reducing atmosphere have mullite as the main crystalline phase. At 1500°C, due to the influence of the reducing atmosphere, mullite remains as the main phase rather than transforming entirely into a glassy phase. Samples with added silicon carbide have higher bulk densities after sintering at temperatures ranging from 1200°C to 1500°C compared to Samples without silicon carbide.
The content of the quartz phase in clay was identified as the main influencing factor for densification and phase transformation. When α-Al2O3 content in clay was ≤40 wt.%, the highest density was achieved after sintering at 1300°C in air, with mullite as the main phase, followed by quartz and α-Al2O3 phases. However, when α-Al2O3 content was ≥50 wt.%, the presence of α-Al2O3 resulted in a decreased bulk density after sintering at ≥1350°C in air, with mullite as the main phase, followed by α-Al2O3 and quartz phases. The presence of α-Al2O3 led to a decrease in bulk density. In reducing atmosphere, the formation of Tridymite reduced the mullite content in sintered, necessitating higher temperatures for maximum densification. Sintered bodies with added silicon carbide exhibited lower sintering temperatures required for achieving high density than those without silicon carbide. Additionally, microstructure analysis revealed that mullite formation increased with higher sintering temperatures, and when α-Al2O3 content ≥50 wt.%, the shape of mullite changes from columnar grains into equiaxed grains. In reducing atmospheres, smaller (0.1μm) mullite grains were observed.
Regarding mechanical properties, clay-aluminum oxide samples sintered in a reducing atmosphere exhibited the highest hardness values compared to those sintered in an air atmosphere and those with added silicon carbide. This could be attributed to the formation of internal crystal defects during the reducing sintering process.
誌謝 I
摘要 II
Abstract III
目錄 V
表目錄 VII
圖目錄 VIII
第1章前言 1
第2章文獻回顧 2
2.1 黏土簡介 2
2.2 氧化鋁簡介 4
2.3 莫來石簡介 6
2.4 碳化矽簡介 9
2.5 莫來石-碳化矽複合性能 10
第3章實驗方法與步驟 11
3.1 實驗材料及藥品 12
3.2 實驗步驟 13
3.2.1 黏土前處理及特性量測 13
3.2.2 漿料製備及濕式球磨 14
3.2.3 乾壓成型 15
3.2.4 在不同環境下燒結 15
3.3 量測與分析 16
3.3.1 緻密度分析 16
3.3.2 相組成分析 16
3.3.3 微觀結構分析 16
3.3.4 半定量分析 17
3.3.5 熱分析TGA以及DSC 17
3.3.6 硬度分析 17
第4章結果與討論 18
4.1 黏土及碳化矽(SiC)原料量測與分析 18
4.2 坯體經燒結後的外觀變化 26
4.3 緻密度分析 32
4.4 相變化分析 52
4.5 微觀結構分析 73
4.6 Quartz、α−Al2O3反應形成Mullite 81
4.7 相變化及緻密度對硬度的影響 88
第5章結論 89
參考文獻 90
[1]F. Bergaya, G. Lagaly, ‘‘ Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science ’’, Developments in Clay Science, Volume 1, Pages 1-18 (2006)
[2]Walid Tahri, Basma Samet, Fernando Pacheco-Torgal, José Aguiar, Samir Baklouti, ‘‘ 12 - Geopolymeric repair mortars based on a low reactive clay ’’, Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures, Pages 293-313 (2018)
[3]J.M. Adams, J.J. Hooper, ‘‘ Clays ’’, Encyclopedia of Materials: Science and Technology (Second Edition), Pages 1236-1242 (2001)
[4]G. W. Brindley, G. Brown, ‘‘ Crystal Structures of Clay Minerals and Their X-Ray Identification ’’, Mineralogical Society of Great Britain and Ireland, Volume 5, 1980
[5]W. David Kingery, H. K. Bowen, Donald R. Uhlmann, ‘‘ Introduction to Ceramics ’’ , 2nd Edition (2013)
[6]Ilhan A. Aksay, Joseph A. Pask, ‘‘ The Silica-Alumina System: Stable and Metastable Equilibria at 1.0 Atmosphere’’ , Science,Vol 183, Issue 4120, Pages 69-71(1974)
[7]William M. Carty, Udayan Senapati, ‘‘ Porcelain—Raw Materials, Processing, Phase Evolution, and Mechanical Behavior ’’, Journal of the American Ceramic Society, (2015)
[8]Ronald G. Munro, ‘‘ Evaluated Material Properties for a Sintered α-Alumina ’’, Journal of the American Ceramic Society, Vol. 80, No. 8, 1919–28 (1997)
[9]Takashi Shirai, Hideo Watanabe, Masayoshi Fuji, Minoru Takahashi, ‘‘ Structural Properties and Surface Characteristics on Aluminum Oxide Powders ’’, Annual report of the Ceramics Research Laboratory Nagoya Institute of Technology, volume 9, Pages 23-31 (2010)
[10]Mathieu Digne, Philippe Sautet, Pascal Raybaud, Hervé Toulhoat,| and Emilio Artacho, ‘‘ Structure and Stability of Aluminum Hydroxides: A Theoretical Study ’’, Journal of Physical Chemistry B, Pages 5155–5162 (2002)
[11]Patrick Euzen, Pascal Raybaud, Xénophon Krokidis, Hervé Toulhoat, Jean-Luc Le Loarer, Jean-Pierre Jolivet, Cédric Froidefond, ‘‘ Alumina ’’ , Pages 1591-1676 (2002)
[12]David L. Cocke, Erik D. Johnson, Robert P. Merrill, ‘‘ Catalysis Reviews: Science and Engineering ’’, Science and Engineering, Volume 26, Issue 2, Pages 163-231 (1984 )
[13]Wefers Karl, Misra Chanakya, ‘‘ Oxides and hydroxides of aluminum ’’, Alcoa Research Laboratories, (1987)
[14]Okumiya Masataro, Yamaguchi Goro, Yamada Osamu, Ono Shuichiro, ‘‘ The Formation of κ and ќ-Al2O3 from the Dehydration of Tohdite 5Al2O3·H2O ’’, Bulletin of the Chemical Society of Japan, Vol.44, No.2, Pages 418-423 (1971)
[15]Xinying Teng, Hanlian Liu , Chuanzhen Huang, ‘‘ Effect of Al2O3 particle size on the mechanical properties of alumina-based ceramics ’’, Materials Science and Engineering: A, Volumes 452–453, Pages 545-551 (2007)
[16]C. Piconi, ‘‘ 1.5 Alumina ’’, Comprehensive Biomaterials II, Volume 1, Pages 92-121 (2017)
[17]C. Ruberto, Y. Yourdshahyan, Bengt I. Lundqvist, ‘‘ Surface properties of metastable alumina: A comparative study of κ- and α-Al2O3 ’’, PHYSICAL REVIEW B , Volumes 67, 195412 (2003)
[18]Pertti Auerkari, ‘‘ Mechanical and physical properties of engineering alumina ceramics ’’, VTT Technical Research Centre of Finland, (1996)
[19]Huishi Guo, Wenfeng Li, ‘‘ Effects of Al2O3 crystal types on morphologies, formation mechanisms of mullite and properties of porous mullite ceramics based on kyanite ’’, Journal of the European Ceramic Society, Volume 38, Issue 2, Pages 679-686 (2018)
[20]Gisèle L. Lecomte-Nana, Aghiles Hammas, ‘‘ Mullite: Structure and Properties ’’, Encyclopedia of Materials: Technical Ceramics and Glasses, Volume 2, Pages 59-75 (2021)
[21]P. Sarin, W. Yoon, R.P. Haggerty, C. Chiritescu, N.C. Bhorkar, W.M. Kriven, ‘‘ Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite—An in situ, high temperature, synchrotron diffraction study ’’, Journal of the European Ceramic Society, 353–365 (2008)
[22]R. Mishra, R.S. Ningthoujam, ‘‘ Chapter 11 - High-Temperature Ceramics ’’, Materials Under Extreme Conditions, Pages 377-409 (2017)
[23]P. Boch, T. Chartier, Alumina, ‘‘ mullite and spinel, zirconia (Chapter 6) ’’, Ceramic Materials: Process, Properties and Application, (2007)
[24]Schneider, Hartmut / Komarneni, Sridhar (Herausgeber), ‘‘ Mullite ’’, Wiley-VCH, Weinheim, (2005)
[25]Ilhan A. Aksay, Daniel M. Dabbs, Mehmet Sarikaya, ‘‘ Mullite for Structural, Electronic, and Optical Applications ’’, Journal of the American Ceramic Society, Pages 2343-2358, (1991)
[26]Mahmoud F. Zawrah, Ahmed R. Wassel, Rasha A. Youness, Mohammed A. Taha, ‘‘Recycling of aluminum dross and silica fume wastes for production of mullite-containing ceramics: Powder preparation, sinterability and properties.’’, Ceramics International, Pages 31661-31671 (2022)
[27]Hugo P.A. Alves, Jaquelígia B. Silva, Liszandra F.A. Campos, Sandro M. Torres, Ricardo P.S. Dutra, Daniel A. Macedo, ‘‘ Preparation of mullite based ceramics from clay–kaolin waste mixtures ’’, Ceramics International, Volume 42, Pages 19086-19090 (2016)
[28]Pallavi Suhasinee Behera, Sunipa Bhattacharyya, ‘‘Effect of different alumina sources on phase formation and densification of single-phase mullite ceramic – Reference clay alumina system.’’, Materials Today Communications, 26, 101818 (2021)
[29]Huifang Wang, Haijun Zhang, Yubao Bi, Haisheng Li, Lihua Lv, Haiqing Yang, Wei Jiang, ‘‘ Effects of different catalysts on performance of self-bonded SiC refractories ’’, Ceramics International, Volume 47, Pages 27863-27872 (2021)
[30]Shiming Hao, Pengru Liu, Huifang Wang, ‘‘ Nanoarchitectonics of SiC/multilayer graphene composite powders with wave absorbing properties ’’, Journal of Alloys and Compounds, Volume 947, 169454 (2023)
[31]Huifang Wang, Haijun Zhang, Yubao Bi, Haisheng Li, Yongfeng Chen, Quanli Jia, ‘‘ Synthesis of SiC whiskers via catalytic reaction method in self-bonded SiC composites ’’, Ceramics International, Volume 46, Issue 9, Pages 12975-12985 (2020)
[32]Hui-fang Wang, Yu-bao Bi, Ning-sheng Zhou, Hai-jun Zhang, ‘‘ Preparation and strength of SiC refractories with in situ β-SiC whiskers as bonding phase ’’, Ceramics International, Volume 42, Pages 727-733 (2016)
[33]Huifang Wang, Haisheng Li, Haijun Zhang, Yubao Bi, Jianghao Liu, Liang Huang, Shaowei Zhang, ‘‘ Nickel-catalyzed preparation of self-bonded SiC refractories with improved microstructure and properties ’’, Journal of the European Ceramic Society, Volume 38, Pages 5219-5227 (2018)
[34]Jianjun Chen, Qiang Shi, Lipeng Xin, Yang Liu, Renjuan Liu, Xiaoyan Zhu, ‘‘ A simple catalyst-free route for large-scale synthesis of SiC nanowires ’’, Journal of Alloys and Compounds, Volume 509, Pages 6844-6847 (2011)
[35]A.C. Santos, S. Ribeiro, ‘‘ Liquid phase sintering and characterization of SiC ceramics ’’, Ceramics International, Volume 44, Pages 11048-11059 (2018)
[36]G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, C. Bindal, ‘‘ The effect of sintering temperature on some properties of Cu–SiC composite ’’, Journal of Alloys and Compounds, Volume 509, Pages 6036-6042 (2011)
[37]Hao Cheng, Fen Ye, Jianfeng Wu, Wei Shi, Senglin Leng, Sizhan Wu, ‘‘ In situ synthesis and mechanism of mullite-silicon carbide composite ceramics for solar thermal storage ’’, Ceramics International,Volume 44, Pages 18541-18550 (2018)
[38]Zihe Li, Zixuan Chang, Xinran Liu, Weimin Zhao, Xu Zhang, Shikang Xiao, Yuhang Tian, Aijun Li, Guifang Han, Jianzhang Li, Jingde Zhang, ‘‘ A novel sintering additive system for porous mullite-bonded SiC ceramics: High mechanical performance with controllable pore structure ’’, Ceramics International, Volume 48, Issue 3, Pages 4105-4114 (2022)
[39]Shuang Bai, Li Guan, Binbin Dong, Yuanyuan Zhang, Guangyao Li, Xinyue Zhang, Jiaxin Li, Yongqiang Chen, Limeng Song, Biao Zhao, Zhiyu Min, Rui Zhang, ‘‘ Preparation of SiC ceramics reinforced with in-situ generated mullite by microwave sintering ’’, Ceramics International, (2023)
[40]Zhuofu Wan, Yan Liu, Shaobai Sang, Yajie Dai, Yawei Li, Tianbin Zhu, ‘‘ Fracture behavior of lightweight mullite-SiC refractories with porous aggregates coated with glass ceramic ’’, Ceramics International, Volume 48, Pages 32273-32282 (2022)
[41]Eli Ringdalen, ‘‘ Changes in Quartz During Heating and the Possible Effects on Si Production ’’, Journal of the Minerals, Metals and Materials Society, Pages 484–492 (2015)
[42]L. K. S. Lima, K. R. Silva, R. R. Menezes, L. N. L. Santana, H. L. Lira, ‘‘ Microstructural characteristics, properties, synthesis and applications of mullite: a review ’’, Cerâmica, Pages 126-142 (2022)
[43]Dieni XIE, Lina YANG, Lingyu LI, Wenjie WANG, Jiachen LIU, Haiyan DU, Xiaoxia HU, ‘‘ The formation mechanism of mullite whisker in the mullite fiber network ’’, Ceramic Society of Japan, Pages 529-535 (2018)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top