跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳品婷
研究生(外文):Pin-Ting Chen
論文名稱:大數據應用在零售商的銷售預測系統:以Walmart的店面銷售資料為例
論文名稱(外文):Big Data Application In retailers' Sales Forecasting System-Take Walmart’s Store Sales Data
指導教授:黃憲隆黃憲隆引用關係
指導教授(外文):Hsien-Long Huang
口試委員:黃憲隆
口試委員(外文):Hsien-Long Huang
口試日期:2023-06-18
學位類別:碩士
校院名稱:大同大學
系所名稱:事業經營學系(所)
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:64
中文關鍵詞:大數據預測分析零售業
外文關鍵詞:Big dataforecasting analysisRetail
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於科技不斷的進步發展,人們已經從網路時代正式進入到大數據的時代,大數據不但提供消費者找尋到更多符合自己喜好的商品,也幫助企業帶來更多的獲利。對於現今而言已經沒有一個產業是不需要依靠大數據的幫忙來優化本身的營運能力,但即便擁有了眾多的數據資料,更加重要的是該如何善用這些有效的資源來幫助企業得到更好的預測結果。本研究將針對零售業進行大數據預測分析,利用美國知名零售業Walmart所提供的數據資料進行銷售預測,並透過創建模型發現提升決策樹迴歸(Boosted Decision Tree Regression)對於零售業的預測是最為準確的,期望模型結果未來在其他零售業也能有良好的預測效果。
In recent years, due to the continuous advancement of technology, people have formally entered the era of big data from the Internet era. Big data not only provides consumers with the opportunity to find more products that meet their preferences but also helps enterprises bring more profits. Nowadays, no industry does not need to rely on big data to optimize its operational capability. Even with a large amount of data, it is more important to make the best use of these effective resources to help enterprises get better forecasting. In this study, we will conduct a big data forecasting analysis for the retail industry, using the data provided by Walmart, a well-known retailer in the United States. By creating a model to determine which regression model is the most accurate for the retail industry. It is expected that the result of the model will have good forecast effects on other retail industries in the future.
致謝 V
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 7
第三節 研究流程 8
第二章 文獻探討 9
第一節 銷售情報管理系統(Point Of Sale) 9
第二節 大數據在虛擬與實體零售業的應用 10
第三節 時間序列在零售業銷售預測的應用 13
第三章 研究方法 16
第一節 資料結構 16
第二節 資料整理 18
第三節 數據分析流程 19
第四章 結果與討論 26
第一節 描述性統計 26
第二節 機器學習過程 30
第三節 機器學習結果整理 35
第五章 結論 39
第一節 研究結論 39
第二節 實務貢獻 39
第三節 研究限制 42
第四節 未來研究 42
參考文獻 43
附錄 49
中文部分:
王炘珏、萬年生,(2020),「UNIQLO來台10年變身台灣「國民品牌」日籍CEO曝4大經營心法」,今周刊。取自 https://www.businesstoday.com.tw/article/category/183016/post/202008190006/。
李宜恬,(2021),「快時尚電商Shein崛起!它憑什麼超越亞馬遜,成為全美下載量最高的購物App?」,未來商務,取自https://fc.bnext.com.tw/articles/view/1438。
徐右螢,(2020),「老牌雜貨店沃爾瑪兩大痛點變翻身契機」。今周刊。取自 https://www.businesstoday.com.tw/article/category/80408/post/202003180034/。
陳芷鈴,(2014),「網購到貨能多快?亞馬遜新專利將搶在下單前就出貨」。數位時代,取自https://www.bnext.com.tw/article/30840/BN-ARTICLE-30840。
提拔我園丁,(2021),「Q10人工智慧(AI)發展史?」,緯育,取自https://blog.tibame.com/?p=17567。
程芷盈,(2022),「擁1700萬會員數零售巨頭全聯用數據金礦擴張版圖」,Money.Udn.Com,取自https://money.udn.com/money/story/5601/6211329。
劉瑾,(2021),「柔性供應鏈何以成剛需」,人民網,取自 http://finance.people.com.cn/BIG5/n1/2021/0709/c1004-32153032.html。
黃敬翔。(2022)。「怎麼擺決定消費者會不會購買!便利商店商品陳列有學問」,Foodnext.Net。取自https://www.foodnext.net/news/industry/paper/5975686636。
謝佳宣,(2018),「沃爾瑪推出Walmart+會員制 向亞馬遜下戰帖」,大紀元,取自 https://www.epochtimes.com/b5/20/9/1/n12373719.htm。
「人臉辨識技術最新趨勢7大應用一次了解」,Face Me,取自https://tw.cyberlink.com/faceme/insights/articles/236/how_is_facial_recognition_used_in_2021。
「什麼是大數據」,OCI,取自 https://www.oracle.com/tw/big-data/what-is-big-data/#history。
Huang,T,(2018),「機器學習: Ensemble Learning之Bagging、Boosting和AdaBoost」。Medium,取自https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-ensemble-learning%E4%B9%8Bbagging-boosting%E5%92%8Cadaboost-af031229ebc3。
Lynn,(2021),「機器學習的衰頹興盛:從類神經網路到淺層學習」,Stockfeel,取自https://www.stockfeel.com.tw/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E7%9A%84%E8%A1%B0%E9%A0%B9%E8%88%88%E7%9B%9B%EF%BC%9A%E5%BE%9E%E9%A1%9E%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF%E5%88%B0%E6%B7%BA%E5%B1%A4%E5%AD%B8%E7%BF%92/。
Lu,A,(2020),「全聯、WALMART、IKEA三大案例,看零售業如何數位型」,Dipp,取自https://blog.withdipp.com/zh-tw/retailer-digita-transformation-casestudy。










英文部分:
Anjali j., (2019), “Decision Tree Analysis”, Theinvestorsbook, retrieved from: https://theinvestorsbook.com/decision-tree-analysis.html#Advantages
Brownlee, J., (2016), “A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning”, Machine Learning Mastery, retrieved from: https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
Bruno, H., and N. Vilcassim, (2008), “Structural demand estimation with varying product availability.”, Marketing Science, 27(6), 1126–1131.
Chen, L., A. J. Mersereau, and Z. Wang, (2017), “Optimal merchandise testing with limited inventory.”, Operations Research, 65(4), 968–991.
Chung, J., and V. R. Rao, (2003), “A general choice model for bundles with multiple-
category products: application to market segmentation and optimal pricing for bundles.”, Journal of Marketing Research, 40(2), 115–130.
“Data structures”,Techtarget,retrived from: https://www.techtarget.com/searchdatamanagement/definition/data-structure
“Decision Tree”, GeeksforGeeks, retrieved from:https://www.geeksforgeeks.org/decision-tree/
“Exploratory Data Analysis”, IBM, retrieved from: https://www.ibm.com/tw-zh/cloud/learn/exploratory-data-analysis
Gaurav., (2021), “An Introduction to Gradient Boosting Decision Trees”,Machinelearningplus, retrieved from:https://www.machinelearningplus.com/machine-learning/an-introduction-to-gradient-boosting-decision-trees/#Gradient-Boosting-Decision-Trees
“Gradient Boosting”, En.Wikipedia.Org, retrieved from: https://en.wikipedia.org/wiki/Gradient_boosting
Hruschka, H., (2017), “Multicategory purchase incidence models for partitions of product categories.”, Journal of Forecasting, 36(3), 230–240.
Hui, S., E. Bradlow, and P. Fader, (2009), “Testing behavioral hypotheses using an
integrated model of grocery store shopping path and purchase behavior.”, Journal of Consumer Research, 36(3), 478–493.
Hui, S., P. Fader, and E. Bradlow, (2009), “Research note —The traveling salesman goes shopping: The systematic deviations of grocery paths from TSP optimality”, Marketing Science, 28(3), 566–572.
Jain, A., N. Rudi, and T. Wang, (2015), “Demand estimation and ordering under censoring: stock-out timing is (almost) all you need.”, Operations Research, 63(1), 134–150.
Karabati, S., B.Tan, and Ö.C. Öztürk, (2009), “A method for estimating stock-out-based substitution rates by using point-of-sale data.”, IIE Transactions, 41(5), 408–420.
Lam, S., M. Vandenbosch, and M. Pearce, (1998), “Retail sales force scheduling based on store traffic forecasting.”, Journal of Retailing, 74(1), 61–88.
Lam, S. Y., M. Vandenbosch, J. Hulland, and M. Pearce, (2001), “Evaluating promotions in shopping environments: Decomposing sales response into attraction, conversion, and spending effects”, Marketing Science, 20(2), 194–215.
Lu, Y., A. Musalem, M. Olivares, and A. Schilkrut, (2013), “Measuring the effect of queues on customer purchases.”, Management Science, 59(8),1743–1763
Mani, V., S. Kesavan, and J. M. Swaminathan, (2015), “Estimating the impact of
understaffing on sales and profitability in retail stores.”, Production and Operations Management”, 24(2), 201–218.
Musalem, A., M. Olivares, E. Bradlow, C. Terwiesch, and D. Corsten, (2010),
“Structural estimation of the effect of out-of-stocks.”, Management Science, 56(7), 1180–1197.
Perdikaki, O., S. Kesavan, and J. Swaminathan, (2012), “Effect of traffic on sales and conversion rates of retail stores.”, Manufacturing and Service Operations Management, 14(1), 145–162
Queenan, C., M. Ferguson, J. Higbie, and R. Kapoor, (2007), “A comparison of
unconstraining methods to improve revenue management systems.”, Production and Operations Management, 16(6), 729–746.
Russell, G. J., and A. Petersen, (2000), “Analysis of cross-category dependence in market basket selection.”, Journal of Retailing, 76(3), 367–392.
“Steps in Decision Tree Analysis”, Tutorhelpdesk, retrieved from: https://www.tutorhelpdesk.com/homeworkhelp/Statistics-/Steps-In-Decision-Tree-Analysis-Assignment-Help.html
Tan, B., and S. Karabati, (2004), “Can the desired service level be achieved when the demand and lost sales are unobserved?”, IIE Transactions, 36(4), 345–358.
Tonya Boone, R. Ganeshan, A. Jain, et al., “Forecasting sales in the supply chain: Consumer analytics in the big data era.”, International Journal of Forecasting.
Van Ryzin, G., and G. Vulcano, (2014), “ A market discovery algorithm to estimate a general class of nonparametric choice models.”, Management Science, 61(2), 281–300.
Vijini, M., (2020), “8 Common Data Structures every Programmer must know” , retrieved from:https://towardsdatascience.com/8-common-data-structures-every-programmer-must-know-171acf6a1a42
“What Is a Decision Tree in Machine Learning?”, DeepAI, retrieved from: https://deepai.org/machine-learning-glossary-and-terms/decision-tree
Wecker, W., (1978), “Predicting demand from sales data in the presence of stockouts.”, Management Science, 24(10), 1043–1054.
“What is Data Processing?”,Talend, retrieved from: https://www.talend.com/resources/what-is-data-processing/
Xiaoharper.,(2019), “Neural Network Regression”, Docs.Microsoft, retrieved from: https://docs.microsoft.com/zh-tw/previous-versions/azure/machine-learning/studio-module-reference/neural-network-regression
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊