|
中文部分: 王炘珏、萬年生,(2020),「UNIQLO來台10年變身台灣「國民品牌」日籍CEO曝4大經營心法」,今周刊。取自 https://www.businesstoday.com.tw/article/category/183016/post/202008190006/。 李宜恬,(2021),「快時尚電商Shein崛起!它憑什麼超越亞馬遜,成為全美下載量最高的購物App?」,未來商務,取自https://fc.bnext.com.tw/articles/view/1438。 徐右螢,(2020),「老牌雜貨店沃爾瑪兩大痛點變翻身契機」。今周刊。取自 https://www.businesstoday.com.tw/article/category/80408/post/202003180034/。 陳芷鈴,(2014),「網購到貨能多快?亞馬遜新專利將搶在下單前就出貨」。數位時代,取自https://www.bnext.com.tw/article/30840/BN-ARTICLE-30840。 提拔我園丁,(2021),「Q10人工智慧(AI)發展史?」,緯育,取自https://blog.tibame.com/?p=17567。 程芷盈,(2022),「擁1700萬會員數零售巨頭全聯用數據金礦擴張版圖」,Money.Udn.Com,取自https://money.udn.com/money/story/5601/6211329。 劉瑾,(2021),「柔性供應鏈何以成剛需」,人民網,取自 http://finance.people.com.cn/BIG5/n1/2021/0709/c1004-32153032.html。 黃敬翔。(2022)。「怎麼擺決定消費者會不會購買!便利商店商品陳列有學問」,Foodnext.Net。取自https://www.foodnext.net/news/industry/paper/5975686636。 謝佳宣,(2018),「沃爾瑪推出Walmart+會員制 向亞馬遜下戰帖」,大紀元,取自 https://www.epochtimes.com/b5/20/9/1/n12373719.htm。 「人臉辨識技術最新趨勢7大應用一次了解」,Face Me,取自https://tw.cyberlink.com/faceme/insights/articles/236/how_is_facial_recognition_used_in_2021。 「什麼是大數據」,OCI,取自 https://www.oracle.com/tw/big-data/what-is-big-data/#history。 Huang,T,(2018),「機器學習: Ensemble Learning之Bagging、Boosting和AdaBoost」。Medium,取自https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-ensemble-learning%E4%B9%8Bbagging-boosting%E5%92%8Cadaboost-af031229ebc3。 Lynn,(2021),「機器學習的衰頹興盛:從類神經網路到淺層學習」,Stockfeel,取自https://www.stockfeel.com.tw/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E7%9A%84%E8%A1%B0%E9%A0%B9%E8%88%88%E7%9B%9B%EF%BC%9A%E5%BE%9E%E9%A1%9E%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF%E5%88%B0%E6%B7%BA%E5%B1%A4%E5%AD%B8%E7%BF%92/。 Lu,A,(2020),「全聯、WALMART、IKEA三大案例,看零售業如何數位型」,Dipp,取自https://blog.withdipp.com/zh-tw/retailer-digita-transformation-casestudy。
英文部分: Anjali j., (2019), “Decision Tree Analysis”, Theinvestorsbook, retrieved from: https://theinvestorsbook.com/decision-tree-analysis.html#Advantages Brownlee, J., (2016), “A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning”, Machine Learning Mastery, retrieved from: https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/ Bruno, H., and N. Vilcassim, (2008), “Structural demand estimation with varying product availability.”, Marketing Science, 27(6), 1126–1131. Chen, L., A. J. Mersereau, and Z. Wang, (2017), “Optimal merchandise testing with limited inventory.”, Operations Research, 65(4), 968–991. Chung, J., and V. R. Rao, (2003), “A general choice model for bundles with multiple- category products: application to market segmentation and optimal pricing for bundles.”, Journal of Marketing Research, 40(2), 115–130. “Data structures”,Techtarget,retrived from: https://www.techtarget.com/searchdatamanagement/definition/data-structure “Decision Tree”, GeeksforGeeks, retrieved from:https://www.geeksforgeeks.org/decision-tree/ “Exploratory Data Analysis”, IBM, retrieved from: https://www.ibm.com/tw-zh/cloud/learn/exploratory-data-analysis Gaurav., (2021), “An Introduction to Gradient Boosting Decision Trees”,Machinelearningplus, retrieved from:https://www.machinelearningplus.com/machine-learning/an-introduction-to-gradient-boosting-decision-trees/#Gradient-Boosting-Decision-Trees “Gradient Boosting”, En.Wikipedia.Org, retrieved from: https://en.wikipedia.org/wiki/Gradient_boosting Hruschka, H., (2017), “Multicategory purchase incidence models for partitions of product categories.”, Journal of Forecasting, 36(3), 230–240. Hui, S., E. Bradlow, and P. Fader, (2009), “Testing behavioral hypotheses using an integrated model of grocery store shopping path and purchase behavior.”, Journal of Consumer Research, 36(3), 478–493. Hui, S., P. Fader, and E. Bradlow, (2009), “Research note —The traveling salesman goes shopping: The systematic deviations of grocery paths from TSP optimality”, Marketing Science, 28(3), 566–572. Jain, A., N. Rudi, and T. Wang, (2015), “Demand estimation and ordering under censoring: stock-out timing is (almost) all you need.”, Operations Research, 63(1), 134–150. Karabati, S., B.Tan, and Ö.C. Öztürk, (2009), “A method for estimating stock-out-based substitution rates by using point-of-sale data.”, IIE Transactions, 41(5), 408–420. Lam, S., M. Vandenbosch, and M. Pearce, (1998), “Retail sales force scheduling based on store traffic forecasting.”, Journal of Retailing, 74(1), 61–88. Lam, S. Y., M. Vandenbosch, J. Hulland, and M. Pearce, (2001), “Evaluating promotions in shopping environments: Decomposing sales response into attraction, conversion, and spending effects”, Marketing Science, 20(2), 194–215. Lu, Y., A. Musalem, M. Olivares, and A. Schilkrut, (2013), “Measuring the effect of queues on customer purchases.”, Management Science, 59(8),1743–1763 Mani, V., S. Kesavan, and J. M. Swaminathan, (2015), “Estimating the impact of understaffing on sales and profitability in retail stores.”, Production and Operations Management”, 24(2), 201–218. Musalem, A., M. Olivares, E. Bradlow, C. Terwiesch, and D. Corsten, (2010), “Structural estimation of the effect of out-of-stocks.”, Management Science, 56(7), 1180–1197. Perdikaki, O., S. Kesavan, and J. Swaminathan, (2012), “Effect of traffic on sales and conversion rates of retail stores.”, Manufacturing and Service Operations Management, 14(1), 145–162 Queenan, C., M. Ferguson, J. Higbie, and R. Kapoor, (2007), “A comparison of unconstraining methods to improve revenue management systems.”, Production and Operations Management, 16(6), 729–746. Russell, G. J., and A. Petersen, (2000), “Analysis of cross-category dependence in market basket selection.”, Journal of Retailing, 76(3), 367–392. “Steps in Decision Tree Analysis”, Tutorhelpdesk, retrieved from: https://www.tutorhelpdesk.com/homeworkhelp/Statistics-/Steps-In-Decision-Tree-Analysis-Assignment-Help.html Tan, B., and S. Karabati, (2004), “Can the desired service level be achieved when the demand and lost sales are unobserved?”, IIE Transactions, 36(4), 345–358. Tonya Boone, R. Ganeshan, A. Jain, et al., “Forecasting sales in the supply chain: Consumer analytics in the big data era.”, International Journal of Forecasting. Van Ryzin, G., and G. Vulcano, (2014), “ A market discovery algorithm to estimate a general class of nonparametric choice models.”, Management Science, 61(2), 281–300. Vijini, M., (2020), “8 Common Data Structures every Programmer must know” , retrieved from:https://towardsdatascience.com/8-common-data-structures-every-programmer-must-know-171acf6a1a42 “What Is a Decision Tree in Machine Learning?”, DeepAI, retrieved from: https://deepai.org/machine-learning-glossary-and-terms/decision-tree Wecker, W., (1978), “Predicting demand from sales data in the presence of stockouts.”, Management Science, 24(10), 1043–1054. “What is Data Processing?”,Talend, retrieved from: https://www.talend.com/resources/what-is-data-processing/ Xiaoharper.,(2019), “Neural Network Regression”, Docs.Microsoft, retrieved from: https://docs.microsoft.com/zh-tw/previous-versions/azure/machine-learning/studio-module-reference/neural-network-regression
|