跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許豪弘
研究生(外文):HSU, HAO-HUNG
論文名稱:作業環境甲醛逸散之改善與管末防治技術研究
論文名稱(外文):The Mitigation of Formaldehyde Emission in the Work Environment and the End-of-pipe Control Technology
指導教授:林紘原
指導教授(外文):LIN, HUNG-YUAN
口試委員:李中光黃富昌李灝銘
口試委員(外文):LEE, CHUNG-KUNGHUANG, FU-CHANGLEE, HOW-MING
口試日期:2023-04-07
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:129
中文關鍵詞:甲醛換氣率洗滌塔管末處理空氣污染防制
外文關鍵詞:formaldehydeair exchange ratescrubberend-of-pipe treatmentair pollution control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:61
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
甲醛是一種無色及有強烈刺激性氣味的氣體,易溶於水及醇醚,而其對人體的傷害主要是表現在嗅覺異常、刺激、過敏及肺功能異常等方面,工作場所甲醛氣體若控制不當,將會導致作業人員之健康受到甲醛之危害,去除排氣中所含甲醛氣體,為本研究之目標。本研究個案係針對一家傢俱材料工廠作業環境甲醛逸散問題進行評估改善與探討管末處理最佳操作條件,以符合該廠設定的加嚴管制與成本最小化目標。研究結果顯示,施工後有時會高於廠方訂定之控制值0.3 ppm,導致此結果之原因有作業區溫度、甲醛逸散面積及甲醛濃度梯度之變異以及集氣效率偏低等。為符合廠方要求之甲醛逸散濃度限值0.3 ppm,宜有效控制作業場所之溫度,因溫度越高,甲醛之逸散率越大,及提高甲醛之捕集效率。排氣甲醛之管末處理在符合經濟性條件下,最佳操作條件為雙塔串聯模式處理,第一段以 NaOCl 為洗滌液,調配氯濃度為600 mg/L,並以硫酸調pH為6.5,再串聯第二段以NaOH為洗滌液,調整 pH 為 12.0進行雙塔串聯洗滌操作,並設計自動加藥系統維持其洗滌液pH值即可達到排氣甲醛去除率85 %以上。
Formaldehyde is a colorless gas with a strong pungent smell, easily soluble in water and alcohol ethers, and its harm to the human body is mainly manifested in abnormal sense of smell, irritation, allergies and abnormal lung function. If formaldehyde gas is improperly controlled in the workplace, it will cause the health of workers to be harmed by formaldehyde. The goal of this study is to remove the formaldehyde gas contained in the exhaust gas.This research case is to evaluate and improve the formaldehyde emission problem in the operating environment of a furniture material factory, and to explore the best operating conditions for end-of-pipe treatment, so as to meet the stricter workplace exposure standard set by the factory as well asa to minimize the operation cost.The research results show that after construction, sometimes it will be 0.3 ppm higher than the control value set by the factory. The reasons for this result include the temperature of the operation area, the variation of the formaldehyde emission area and the concentration gradient of formaldehyde, and the low gas collection efficiency.In order to meet the formaldehyde emission concentration limit of 0.3 ppm required by the factory, it is advisable to effectively control the temperature of the workplace, because the higher the temperature, the greater the emission rate of formaldehyde and improve the capture efficiency of formaldehyde.The end-of-pipe treatment of exhaust formaldehyde is in line with the economical conditions. The best operating conditions are two towers in series. The first stage uses NaOCl as the washing liquid, the chlorine concentration is 600 mg/L, and sulfuric acid is used to adjust the pH to 6.5 , and then connect the second stage with NaOH as the washing liquid, adjust the pH to 12.0 to carry out the double-tower series washing operation, and design an automatic dosing system to maintain the pH value of the washing liquid to achieve a removal rate of more than 85% of exhaust formaldehyde.
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
表目錄 VII
圖目錄 IX
附錄 XII
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1甲醛氣體之來源、特性及危害 3
2.2人造板內甲醛之逸散速率 4
2.2.1人造板內甲醛的釋放來源及機制 4
2.2.2影響人造板甲醛釋放量之因素 5
2.2.3人造板產品結構對甲醛釋放的影響 10
2.2.4人造板甲醛釋放量與負載率的相關性 10
2.3室內甲醛氣體之去除方法 11
2.3.1通風換氣法 11
2.3.2填充床式洗滌塔吸收法 12
第三章 實驗材料及研究方法 20
3.1實驗藥品 20
3.2填充式洗滌塔實驗模場 20
3.2.1甲醛分析儀器及甲醛氣體來源 23
3.3研究架構 28
3.4實驗項目與步驟 29
3.4.1通風換氣之測試 29
3.4.2洗滌塔模場之測試 37
第四章 結果與討論 35
4.1通風換氣之測試結果 35
4.1.1作業場所監測數據分析 35
4.1.2作業區排氣設備施工前後量化數據比較 41
4.1.3施工後集氣效率評估 41
4.2洗滌塔模場之測試結果 44
4.2.1實驗模場設計及操作參數之適合性 44
4.2.2單塔清水洗滌測試 47
4.2.3單塔氫氧化鈉洗滌測試 53
4.2.4雙塔串聯洗滌測試 64
4.2.5經濟評估 74
4.2.6結論 75
第五章 結論 77
參考文獻 80
附錄一:水洗塔測試數據 84
附錄二:相關法規 125
1.固定污染源空氣污染物排放標準 125
2.勞工作業場所容許暴露標準 127
3. 室內空氣品質標準 128
1.甲醛安全資料表,環境事故專業諮詢中心製作,民國107年版。
2.國家環境毒物研究中心102年11月4日(參考:http://nehrc.nhri.org.tw/toxic/news/%E7%94%B2%E9%86%9B1050428.pdf)
3.環保署訂定之固定污染源空氣污染物排放標準及勞動部訂定之勞工作業場所容許暴露標準。
4.環保署訂定之室內空氣品質標準。
5.經濟部標準檢驗局103年度研究計畫,「再構成木材」-甲醛釋出量檢測之探討。
6.H. Chen, G. Sun, and S. Zhang, “Harmful effects of formaldehyde and measures for reducing formaldehyde emission from wood-based panels,” China Wood Industry, vol. 20, no. 5, pp. 32-33, 2006.
7.X. Liu, “Study on the Harmful Substances Release from Furniture Harmful Substances and Indoor Air Quality,” Nanjing Forestry University, Nanjing, Jiangsu, China, 2003.
8.F. Xing, Z. Lu, and S. Zhang, “Study on the characteristics of formaldehyde emission from MDF,” Journal of Building Materials, no. 4, pp. 688–691, 2015.
9.M. Meng and W. Hong, “Mathematical model for the formaldehyde emission from wood composites,” Forest Products Journal, vol. 67, no. 1-2, pp. 126–134, 2017.
10.Z. He, Control of VOC Emissions from Wood-based Panels: Principle, Method and Effect, Tsinghua University, Beijing, China, 2011.
11.S. Li, Design of Small Environment Chamber and Study of VOC Emission Characteristic from Wood-based Panel, Northeast Forestry University, Harbin,China, 2013.
12.S. Kim, J.-A. Kim, H.-J. Kim, H. Hyoung Lee, and D.-W. Yoon, “The effects of edge sealing treatment applied to wood-based composites on formaldehyde emission by desiccator test method,” Polymer Testing, vol. 25, no. 7, pp. 904–911, 2006.
13.J. Wang and J. Shen, “Impact of hot-pressing parameters and climate condition on total volatile organic compounds and formaldehyde emissions from particleboard,” Journal of Northeast Forestry University, vol. 39, no. 7, pp. 71–73, 2011.
14.C.-C. Lin, K.-P. Yu, P. Zhao, and G. Whei-May Lee, “Evaluation of impact factors on VOC emissions and concentrations from wooden flooring based on chamber tests,” Building and Environment, vol. 44, no. 3, pp. 525–533, 2009.
15.D. Chi, The Study on Emission Law of Formaldehyde from Wood-based Panels, Central South University, Changsha, China, 2014.
16.G. E. Mayers, “The effects of temperature and humidity on formaldehyde emission from UF-bolded boards: a literature critique,” Forest Products Journal, vol. 35, no. 9, p. 20~31, 1985.
17.Y. Zhang, X. Luo, X. Wang, K. Qian, and R. Zhao, “Influence of temperature on formaldehyde emission parameters of dry building materials,” Atmospheric Environment, vol. 41, no. 15, pp. 3203–3216, 2007.
18.Q. Deng, X. Yang, and J. Zhang, “Study on a new correlation between diffusion coefficient and temperature in porous building materials,” Atmospheric Environment, vol. 43, no. 12, pp. 2080–2083, 2009.
19.S. Huang, J. Xiong, and Y. Zhang, “Impact of temperature on the ratio of initial emittable concentration to total concentration for formaldehyde in building materials: theoretical correlation and validation,” Environmental Science & Technology, vol. 49, no. 3, pp. 1537–1544, 2015.
20.C. R. Frihart, J. M. Wescott, M. J. Birkeland, and K. M. Gonner, “Formaldehyde emissions from ULEF- and NAF-bonded commercial hardwood plywood as influenced by temperature and relative humidity,” in Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe-Timber Committee, pp. 1–13, 2010.
21.C. R. Frihart, J. M. Wescott, T. L. Chaffee, and K. M. Gonner, “Formaldehyde emissions from urea-formaldehyde– and noadded- formaldehyde–bonded particleboard as influenced by temperature and relative humidity,” Forest Products Journal, vol. 62, no. 7-8, pp. 551–558, 2012.
22.S. Parthasarathy, R. L. Maddalena, M. L. Russell, and M. G. Apte, “Effect of temperature and humidity on formaldehyde emissions in temporary housing units,” Journal of the Air & Waste Management Association (1995), vol. 61, no. 6, pp. 689–695, 2011.
23.M. Guo, X. Pei, F. Mo, J. Liu, and X. Shen, “Formaldehyde concentration and its influencing factors in residential homes after decoration at Hangzhou, China,” Journal of Environmental Sciences, vol. 25, no. 5, pp. 908–915, 2013.
24.Y. Yang, L. Q. Li, W. W. Ma et al., “Effect of relative humidity and temperature on formaldehyde emissions of plywood panels,” China Environmental Science, vol. 36, no. 2, pp. 390–397, 2016.
25.S. Huang, W. Wei, L. B. Weschler et al., “Indoor formaldehyde concentrations in urban China: preliminary study of some important influencing factors,” Science of the Total Environment, vol. 590-591, pp. 394–405, 2017.
26.I. Andersen, G. R. Lundqvist, and L. Mølhave, “Indoor air pollution due to chipboard used as a construction material,” Atmospheric Environment (1967), vol. 9, no. 12, pp. 1121– 1127, 1975.
27.工業通風(第六版2018),編著者:林子賢, 出版者: 新文京開發出版股份有限公司。
28.黃俊榮,排氣中酚之化學洗滌去除,碩士論文,國立中山大學環境工程研究所,2015。
29.黃麗敏,玉米胚芽油壓榨機排煙之化學洗滌除臭研究,國立中山大學碩士論文,2001 年。
30.空氣污染與控制,編著:陳維新、江金龍,出版者:高立圖書有限公司,中華民國一零六年九月 第十五版發行。
31.周明顯,臭味及揮發性有機物控制,國立中山大學出版,2007。
32.通風經驗設計,編著者:全陸詩, 出版者: 財團法人徐氏基金會。
33.工業通風設計基礎,本書原名“Industrial Ventilation Manual”,編譯者:王洪鎧, 出版者: 財團法人徐氏基金會。
34.環境工程技師公會廢氣處理設計參數。
35.操作績效自我評估管理制度手冊 酸鹼性氣體洗滌塔 撰稿者:白曛綾 教授 陳建志 補助單位:科 學 工 業 園 區 管 理 局 執行單位:國立交通大學環境工程研究所 中華民國九十二年十二月 第二版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top