1.卓信誠, ''半導體與積體電路製造技術”,科技圖書股份有限公司. 民國 79 年。.
2.古偉業, “積體電路”,全華科技圖書股份有限公司. 民國 71 年.
3.孫嘉芳, 科學月刊33 卷 4 期,331, 民國 91 年.
4.粱友誠, Co40Fe40W20 薄膜特性之研究,國立雲林科技大學材料科技研究所 碩士論文. 民國 109 年.
5.Islam, R., B. Cui, and G.-X. Miao, Dry etching strategy of spin-transfer-torque magnetic random access memory: A review. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2020. 38(5): p. 050801.
6.Grezes, C., et al., Voltage-controlled magnetic tunnel junctions with synthetic ferromagnet free layer sandwiched by asymmetric double MgO barriers. Journal of Physics D: Applied Physics, 2019. 53(1): p. 014006.
7.Dieny, B. and M. Chshiev, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Reviews of Modern Physics, 2017. 89(2): p. 025008.
8.Santos, T.S., et al., Ultrathin perpendicular free layers for lowering the switching current in STT-MRAM. Journal of Applied Physics, 2020. 128(11): p. 113904.
9.Honjo, H., et al., Influence of hard mask materials on the magnetic properties of perpendicular MTJs with double CoFeB/MgO interface. IEEE Transactions on Magnetics, 2020. 56(8): p. 1-4.
10.Pashen'kin, I.Y., et al., Magnetoelectric Effect in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions. JETP Letters, 2020. 111(12).
11.Ikeda, S., et al., Magnetic tunnel junctions for spintronic memories and beyond. IEEE Transactions on Electron Devices, 2007. 54(5): p. 991-1002.
12.Kawahara, T., et al., Spin-transfer torque RAM technology: Review and prospect. Microelectronics Reliability, 2012. 52(4): p. 613-627.
13.Elmen, G., Magnetic alloys of iron, nickel, and cobalt. The Bell System Technical Journal, 1929. 8(3): p. 435-465.
14.Ghorbani, H., et al., Effect of Yb doping on the structural and magnetic properties of cobalt ferrite nanoparticles. Materials Research Bulletin, 2022. 147: p. 111642.
15.Bulai, G., et al., Effect of rare earth substitution in cobalt ferrite bulk materials. Journal of Magnetism and Magnetic Materials, 2015. 390: p. 123-131.
16.Li, J.-m., et al., Effect of boron/phosphorus-containing additives on electrodeposited CoNiFe soft magnetic thin films. Transactions of Nonferrous Metals Society of China, 2013. 23(3): p. 674-680.
17.Sharif, R., et al., Magnetic and microstructural characterizations of CoFe and CoFeB nanowires. Journal of Magnetism and Magnetic Materials, 2008. 320(8): p. 1512-1516.
18.Akyol, M., et al., Effect of boron content on structure and magnetic properties in CoFe2O4 spinel nanocrystals. Journal of Alloys and Compounds, 2018. 744: p. 528-534.
19.Mathon, J. and A. Umerski, Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction. Physical Review B, 2001. 63(22): p. 220403.
20.Chen, Y.-T. and W. Hsieh, Thermal, magnetic, electric, and adhesive properties of amorphous Co60Fe20B20 thin films. Journal of alloys and compounds, 2013. 552: p. 283-288.
21.Hamdi, S., et al., Enhancing the structural, optical and electrical conductivity properties of ZnO nanopowders through Dy doping. Inorganic Chemistry Communications, 2022: p. 109819.
22.Tsymbal, E.Y. and I. Zutic, Spin transport and magnetism. 2012: CRC press.
23.Zabel, H. and M. Farle, Magnetic nanostructures: spin dynamics and spin transport. Vol. 246. 2012: Springer.
24.Julliere, M., Tunneling between ferromagnetic films. Physics letters A, 1975. 54(3): p. 225-226.
25.Ikeda, S., et al., Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in Co Fe B∕ Mg O∕ Co Fe B pseudo-spin-valves annealed at high temperature. Applied Physics Letters, 2008. 93(8): p. 082508.
26.Oguz, K. and J. Coey, Room-temperature magnetoresistance in CoFeB/STO/CoFeB magnetic tunnel junctions. Journal of magnetism and magnetic materials, 2009. 321(8): p. 1009-1011.
27.Mantovan, R., et al., Perpendicular magnetic anisotropy in Ta/CoFeB/MgO systems synthesized on treated SiN/SiO2 substrates for magnetic memories. Thin Solid Films, 2013. 533: p. 75-78.
28.Wang, Y., et al., The role of inhomogeneity of perpendicular anisotropy in magnetic properties of ultra thin CoFeB film. Journal of Applied Physics, 2014. 115(5): p. 053901.
29.Kipgen, L., et al., In-plane magnetic anisotropy and coercive field dependence upon thickness of CoFeB. Journal of magnetism and magnetic materials, 2012. 324(19): p. 3118-3121.
30.Gayen, A., et al., Effects of composition, thickness and temperature on the magnetic properties of amorphous CoFeB thin films. Journal of Alloys and Compounds, 2017. 694: p. 823-832.
31.Teixeira, J., et al., Domain imaging, MOKE and magnetoresistance studies of CoFeB films for MRAM applications. Materials Science and Engineering: B, 2006. 126(2-3): p. 180-186.
32.Dimopoulos, T., et al., Thermal annealing of junctions with amorphous and polycrystalline ferromagnetic electrodes. Journal of applied physics, 2004. 96(11): p. 6382-6386.
33.Sharma, P., et al., Temperature and thickness driven spin-reorientation transition in amorphous Co-Fe-Ta-B thin films. Physical Review B, 2006. 73(5): p. 052401.
34.Lakshmanan, S., et al., Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces. Journal of Magnetism and Magnetic Materials, 2017. 435: p. 81-86.
35.Xu, Z. and L. Qin, Effects of sputtering parameters and annealing temperatures on magnetic properties of CoFeB films. Journal of Magnetism and Magnetic Materials, 2021. 538: p. 168302.
36.Xie, H., et al., Effect of substrate roughness on the magnetic properties of CoFeB films. Journal of Magnetism and Magnetic Materials, 2018. 461: p. 19-22.
37.Armstrong, F. and W. Teo, Electricity and magnetism. Anaesthesia & Intensive Care Medicine, 2020. 21(5): p. 252-255.
38.Williams, D., N.G. Mandal, and A. Sharma, Electricity and magnetism. Anaesthesia & Intensive Care Medicine, 2011. 12(9): p. 423-425.
39.Roe, J. and S. Roberts, Electricity and magnetism. Anaesthesia & Intensive Care Medicine, 2023.
40.Cheng, D.K., Field and Wave Electromagnetics,3rd ed,Addison-Wesley,New York. 1989.
41.C.Kittel, Introduction of Solid State Phys,7th ed,John Wiley & Sons inc,New York.
42.B.D.Cullity, Introduction to Magnetic Materials,Addison Wesley,New York. 1972.
43.Aharoni, A., Introduction to the Theory of Ferromagnetism. Vol. 109. 2000: Clarendon Press.
44.Sundaresan, A. and C. Rao, Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today, 2009. 4(1): p. 96-106.
45.姜寿亭 and 李卫, 凝聚态磁性物理. Vol. 10. 2003: 科学出版社.
46.柳育騏, 鈷鐵釔薄膜經熱處理後之特性研究,國立雲林科技大學,碩士論文, 民國111年.47.Chikazumi, S. and C.D. Graham, Physics of ferromagnetism. 1997: Oxford university press.
48.Smart, J.S., The Néel theory of ferrimagnetism. American Journal of Physics, 1955. 23(6): p. 356-370.
49.Néel, L., Antiferromagnetism and ferrimagnetism. Proceedings of the Physical Society. Section A, 1952. 65(11): p. 869.
50.Pippard, A.B., Magnetoresistance in metals. Vol. 2. 1989: Cambridge university press.
51.Paraskevopoulos, D., R. Meservey, and P. Tedrow, Spin polarization of electrons tunneling from 3 d ferromagnetic metals and alloys. Physical Review B, 1977. 16(11): p. 4907.
52.Tedrow, P. and R. Meservey, Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Physical Review B, 1973. 7(1): p. 318.
53.Venables, J., G. Spiller, and M. Hanbucken, Nucleation and growth of thin films. Reports on progress in physics, 1984. 47(4): p. 399.
54.楊偉仁, 以直流磁控及高功率脈衝磁控濺鍍之 TiO2光觸媒薄膜的特性分析比較,國立交通大學,博士論文. 民國102年.55.周天一, 熱處理對矽基板上的鈷鐵鎢(Co40Fe40W20)薄膜之特性研究,國立雲林科技大學,碩士論文, 民國110年.56.Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
57.林浩揚, “鎢下電極對磁穿隧結構磁特性的影響ȹ,國立雲林科技大學材
料科技研究所碩士論文, 民國 105 年.
58.Porte, G., Tilted alignment of MBBA induced by short-chain surfactants. Journal de Physique, 1976. 37(10): p. 1245-1252.
59.磁量生技股份有限公司,變頻磁導分析儀XacQuan操作與維修手冊,, 民國97年.
60.Zhang, H., et al., Tuning the magnetic anisotropy of CoFeB grown on flexible substrates. Chinese Physics B, 2015. 24(7): p. 077501.
61.Stamate, E., Lowering the resistivity of aluminum doped zinc oxide thin films by controlling the self-bias during RF magnetron sputtering. Surface and Coatings Technology, 2020. 402: p. 126306.
62.Consiglio, R., et al., The nano-scratch tester (NST) as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films. Thin Solid Films, 1998. 332(1-2): p. 151-156.
63.Lampke, T., et al., Details of crystalline growth in co-deposited electroplated nickel films with hard (nano) particles. Applied Surface Science, 2006. 253(5): p. 2399-2408.
64.Mussert, K., et al., A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061-Al 2 O 3 MMC. Journal of materials science, 2002. 37: p. 789-794.
65.Grütter, P., et al., Application of atomic force microscopy to magnetic materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1988. 6(2): p. 279-282.
66.Santoyo-Salazar, J., M. Castellanos-Roman, and L.B. Gómez, Structural and magnetic domains characterization of magnetite nanoparticles. Materials Science and Engineering: C, 2007. 27(5-8): p. 1317-1320.
67.Sreethawong, T., et al., A simple route utilizing surfactant-assisted templating sol–gel process for synthesis of mesoporous Dy2O3 nanocrystal. Journal of colloid and interface science, 2006. 300(1): p. 219-224.
68.Abu-Zied, B.M. and A.M. Asiri, Synthesis of Dy2O3 nanoparticles via hydroxide precipitation: effect of calcination temperature. Journal of Rare Earths, 2014. 32(3): p. 259-264.
69.Kharmouche, A., et al., Structural and magnetic properties of evaporated Co/Si (100) and Co/glass thin films. Journal of Physics D: Applied Physics, 2004. 37(18): p. 2583.
70.Chen, Y.-T., S. Lin, and Y. Lin, Effect of low-frequency alternative-current magnetic susceptibility in Ni80Fe20 thin films. Journal of Nanomaterials, 2012. 2012: p. 39-39.
71.Chen, Y.-T. and Z. Chang, Low-frequency alternative-current magnetic susceptibility of amorphous and nanocrystalline Co60Fe20B20 films. Journal of Magnetism and Magnetic Materials, 2012. 324(14): p. 2224-2226.
72.Ke, Y., et al., Resistivity of thin Cu films with surface roughness. Physical Review B, 2009. 79(15): p. 155406.
73.Marom, H. and M. Eizenberg, The effect of surface roughness on the resistivity increase in nanometric dimensions. Journal of applied physics, 2006. 99(12): p. 123705.
74.Das, C. and P. Alagarsamy, Tuning the magnetic properties of stripe domain structured CoFeB films using stack structure with spacer layer thickness dependent interlayer coupling. Journal of Magnetism and Magnetic Materials, 2018. 448: p. 23-30.
75.Tang, Z., et al., Thickness dependence of magnetic anisotropy and domains in amorphous Co40Fe40B20 thin films grown on PET flexible substrates. Journal of Magnetism and Magnetic Materials, 2017. 426: p. 444-449.
76.Ha, Y., et al., Effect of substrate roughness and film thickness on the magnetic properties of CoFeB films on polymer substrate. Vacuum, 2021. 191: p. 110399.
77.Sun, B., et al., Perpendicular coercive force of thick CoFeB thin films grown on silicon substrate. Materials Letters, 2014. 123: p. 221-223.
78.Wang, S., et al., Improving the composition and multifunctional properties of amorphous boron nitride films prepared by post-annealing assisted femtosecond pulsed laser deposition method. Ceramics International, 2023.
79.Zeng, H., W.R. Lacefield, and S. Mirov, Structural and morphological study of pulsed laser deposited calcium phosphate bioceramic coatings: influence of deposition conditions, laser parameters, and target properties. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2000. 50(2): p. 248-258.
80.Vangolu, Y. and M.T. Yurtcan, Wear and corrosion properties of wollastonite and boron nitride doped, hydroxyapatite-based HAp-Wo-BN composite coatings prepared by pulsed laser deposition. Ceramics International, 2021. 47(23): p. 32969-32978.
81.Wenzel, R.N., Surface roughness and contact angle. The Journal of Physical Chemistry, 1949. 53(9): p. 1466-1467.
82.Bikerman, J., The Surface Roughness and Contact Angle. The Journal of Physical Chemistry, 1950. 54(5): p. 653-658.
83.Zenkin, S., et al., Thickness dependent wetting properties and surface free energy of HfO2 thin films. Applied Physics Letters, 2016. 108(23): p. 231602.
84.McHale, G., M. Newton, and N. Shirtcliffe, Water‐repellent soil and its relationship to granularity, surface roughness and hydrophobicity: a materials science view. European Journal of Soil Science, 2005. 56(4): p. 445-452.
85.Madadi, F., et al., Influence of surface roughness and hydrophobicity of bipolar plates on PEM performance. Surface and Coatings Technology, 2020. 389: p. 125676.
86.梁燕, et al., 稀土 Dy 对 Cu-Cr-Ti 合金时效态组织和性能的影响. 材料科学与工艺, 2010(5): p. 614-618.
87.Tung, H.-M., et al., Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Materials Science and Engineering: A, 2009. 500(1-2): p. 104-108.
88.Kapustianyk, V., et al., Influence of size effect and sputtering conditions on the crystallinity and optical properties of ZnO thin films. Optics Communications, 2007. 269(2): p. 346-350.
89.Heavens, O., Optical properties of thin films. Reports on Progress in Physics, 1960. 23(1): p. 1.
90.Aspnes, D.E., Optical properties of thin films. Thin solid films, 1982. 89(3): p. 249-262.