跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王昱植
研究生(外文):WANG, YU-ZHI
論文名稱:鈷鐵硼鏑(Co40Fe40B10Dy10)薄膜經熱處理的粗糙度與磁特性之影響
論文名稱(外文):Effects of heat treatment on Roughness and Magnetic properties of (Co40Fe40B10Dy10) Thin Films
指導教授:陳元宗
指導教授(外文):Chen,YUAN- TSUNG
口試委員:馮志龍歐信良
口試委員(外文):FENG, ZHI-LONGSIN, LIANG-OU
口試日期:2023-06-01
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:120
中文關鍵詞:鈷鐵硼鏑熱處理磁性薄膜粗糙度
外文關鍵詞:CoFeBDyHeat treatmentMagnetic filmRoughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用(DC)磁控濺鍍系統沉積Co40Fe40B10Dy10薄膜,於Si(100)與玻璃兩種不同基板上,沉積厚度分別為10、20、30、40和50 nm,並經由真空退火爐進行熱處理,溫度設置常溫、100℃、200℃和300℃,以上條件共40組樣品,藉由各項儀器進行檢測分析,並探討材料的結構與粗糙度對於電性、磁性、附著性和機械性質的影響。
由XRD結果得知,Si(100) /Co40Fe40B10Dy10於不同熱處理溫度下,均有產生2θ=47.8°、54.65°和56.45°,分別為Dy2O3(440)、Co2O3(422)和Co2O3(511)的氧化物特徵峰,氧化物特徵峰沒有隨著薄膜厚度增加而強度上升,於glass / Co40Fe40B10Dy10薄膜沒有結晶相。
由交流磁導率結果得知Co40Fe40B10Dy10沉積於Si(100)與玻璃基板,在任何熱處理溫度之條件下,得到最佳共振頻率為50 Hz,最大χac值均會隨著薄膜沉積厚度增加而有上升之趨勢,Si(100) /Co40Fe40B10Dy10和glass / Co40Fe40B10Dy10薄膜,皆於熱處理溫度300°C薄膜厚度為50 nm下,有最大的χac值為0.1821 a.u.和0.1853 a.u。
由四點探針結果得知Si(100) /Co40Fe40B10Dy10和glass / Co40Fe40B10Dy10薄膜,隨著薄膜沉積厚度增加和越高熱處理溫度其電阻率與片電阻數值皆有下降的趨勢。
藉由原子力顯微鏡得知50 nm的Si(100) /Co40Fe40B10Dy10和glass / Co40Fe40B10Dy10薄膜,隨著熱處理溫度的上升條紋狀磁區分佈越明顯。
由接觸角量測儀結果得知Si(100) /Co40Fe40B10Dy10和glass / Co40Fe40B10Dy10薄膜在去離子水與甘油中,於相同熱處理溫度下,隨著沉積薄膜厚度增加,其接觸角度則會有變小趨勢;在相同厚度不同熱處理溫度下,其接觸角度也會有變小趨勢;表面能在相同薄膜厚度,隨著熱處理溫度的提高時其表面能也會隨之提高,而熱處理300°C時皆能獲得最大表面能數值,厚度對於表面能的影響較不明顯。
由奈米壓痕結果得知Si(100)與玻璃的Co40Fe40B10Dy10薄膜最終的硬度會先變軟後再變硬,並經由300°熱處理後數值都有明顯的變硬且都有最硬的趨勢;楊氏模數相同熱處理溫度時隨著薄膜厚度越厚,也隨著熱處理溫度越高。
由微型光譜儀結果得知glass / Co40Fe40B10Dy10 (10~50 nm),因厚度效應與介面效應使穿透度皆會因薄膜的厚度增厚而下降,而吸收強度則與穿透率成反比。

In this study, Co40Fe40B10Dy10 thin films were deposited on two different substrates, Si(100) and glass, with thicknesses of 10, 20, 30, 40 and 50 nm respectively, using a magnetron sputtering system (DC). A total of 40 samples were examined and analyzed by various instruments to investigate the effects of material structure and roughness on electrical, magnetic, adhesion and mechanical properties.
The XRD results showed that Si(100)/ Co40Fe40B10Dy10 produced 2θ = 47.8°, 54.65° and 56.45° oxide peaks of Dy2O3(440), Co2O3(422) and Co2O3(511) respectively at different heat treatment temperatures, and the oxide peaks did not increase in intensity with increasing film thickness. The intensity of the oxide peaks does not increase with the increase of the film thickness, and there is no crystalline phase in the glass / Co40Fe40B10Dy10 film.
From the AC magnetic permeability results, it was found that Co40Fe40B10Dy10 deposited on Si(100) and glass substrate, the best resonance frequency of 50 Hz was obtained at any heat treatment temperature, and the maximum χac value tends to increase with the increase of the film deposition thickness. The maximum χac values of 0.1821 a.u. and 0.1853 a.u. were obtained for both Si(100) / Co40Fe40B10Dy10 and glass / Co40Fe40B10Dy10 films at a heat treatment temperature of 300°C and a film thickness of 50 nm.
From the four-point probe results, it was found that the resistivity and sheet resistance values of Si(100)/ Co40Fe40B10Dy10 and glass/ Co40Fe40B10Dy10 films tend to decrease as the film deposition thickness increases and the heat treatment temperature increases.
The atomic force microscopy showed that the distribution of striped magnetic zones in the Si(100)/ Co40Fe40B10Dy10 and glass/ Co40Fe40B10Dy10 films at 50 nm increased with the increase of heat treatment temperature.
From the results of contact angle measurement, we know that the contact angles of Si(100) / Co40Fe40B10Dy10 and glass / Co40Fe40B10Dy10 films in deionized water and glycerol tend to decrease with the increase of deposited film thickness at the same heat treatment temperature; the contact angles also tend to decrease at different heat treatment temperatures for the same thickness; The surface energy increases with the increase of the heat treatment temperature for the same film thickness, and the maximum surface energy value is obtained at 300°C. The effect of thickness on the surface energy is not obvious.
The results of nanoindentation showed that the final hardness of Si(100) and glass Co40Fe40B10Dy10 films became softer and then harder, and the values of both films hardened significantly after heat treatment at 300°C and both had a tendency to be hardest; the Young's modulus was the same at the same heat treatment temperature, and the thickness of the films became thicker and the heat treatment temperature became higher.
From the results of the microspectrometer, we know that the penetration of glass / Co40Fe40B10Dy10 (10~50 nm) decreases due to the thickness effect and interface effect, and the absorption intensity is inversely proportional to the penetration rate.

摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 vii
圖目錄 ix
第 1 章 緒論 1
1.1 積體電路與薄膜發展 1
1.2 研究背景與動機 2
1.3 研究目的 3
第 2 章 基礎理論與文獻回顧 5
2.1 文獻回顧 5
2.2 磁性薄膜基本理論 7
2.3 薄膜沉積理論 15
第 3 章 實驗步驟與設備 17
3.1 實驗流程 17
3.2 濺鍍系統-兩靶式 DC 磁控濺鍍系統 18
3.3 真空退火爐 20
3.4 X-ray繞射分析儀 21
3.5 接觸角量測儀 23
3.6 微型光譜儀 25
3.7 四點探針量測 26
3.8 交流磁導分析儀 28
3.9 奈米壓痕儀 29
3.10 原子力顯微鏡 32
第 4 章 結果與討論 35
4.1 XRD 結構分析 37
4.2 磁電特性分析 42
4.3 AFM表面粗糙度與磁區分析 56
4.4 薄膜接觸角分析 59
4.5 薄膜表面能分析 84
4.6 奈米壓痕硬度分析 87
4.7 穿透與吸收強度分析 92
第 5 章 結論 97
參考文獻 99



1.卓信誠, ''半導體與積體電路製造技術”,科技圖書股份有限公司. 民國 79 年。.
2.古偉業, “積體電路”,全華科技圖書股份有限公司. 民國 71 年.
3.孫嘉芳, 科學月刊33 卷 4 期,331, 民國 91 年.
4.粱友誠, Co40Fe40W20 薄膜特性之研究,國立雲林科技大學材料科技研究所 碩士論文. 民國 109 年.
5.Islam, R., B. Cui, and G.-X. Miao, Dry etching strategy of spin-transfer-torque magnetic random access memory: A review. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2020. 38(5): p. 050801.
6.Grezes, C., et al., Voltage-controlled magnetic tunnel junctions with synthetic ferromagnet free layer sandwiched by asymmetric double MgO barriers. Journal of Physics D: Applied Physics, 2019. 53(1): p. 014006.
7.Dieny, B. and M. Chshiev, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Reviews of Modern Physics, 2017. 89(2): p. 025008.
8.Santos, T.S., et al., Ultrathin perpendicular free layers for lowering the switching current in STT-MRAM. Journal of Applied Physics, 2020. 128(11): p. 113904.
9.Honjo, H., et al., Influence of hard mask materials on the magnetic properties of perpendicular MTJs with double CoFeB/MgO interface. IEEE Transactions on Magnetics, 2020. 56(8): p. 1-4.
10.Pashen'kin, I.Y., et al., Magnetoelectric Effect in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions. JETP Letters, 2020. 111(12).
11.Ikeda, S., et al., Magnetic tunnel junctions for spintronic memories and beyond. IEEE Transactions on Electron Devices, 2007. 54(5): p. 991-1002.
12.Kawahara, T., et al., Spin-transfer torque RAM technology: Review and prospect. Microelectronics Reliability, 2012. 52(4): p. 613-627.
13.Elmen, G., Magnetic alloys of iron, nickel, and cobalt. The Bell System Technical Journal, 1929. 8(3): p. 435-465.
14.Ghorbani, H., et al., Effect of Yb doping on the structural and magnetic properties of cobalt ferrite nanoparticles. Materials Research Bulletin, 2022. 147: p. 111642.
15.Bulai, G., et al., Effect of rare earth substitution in cobalt ferrite bulk materials. Journal of Magnetism and Magnetic Materials, 2015. 390: p. 123-131.
16.Li, J.-m., et al., Effect of boron/phosphorus-containing additives on electrodeposited CoNiFe soft magnetic thin films. Transactions of Nonferrous Metals Society of China, 2013. 23(3): p. 674-680.
17.Sharif, R., et al., Magnetic and microstructural characterizations of CoFe and CoFeB nanowires. Journal of Magnetism and Magnetic Materials, 2008. 320(8): p. 1512-1516.
18.Akyol, M., et al., Effect of boron content on structure and magnetic properties in CoFe2O4 spinel nanocrystals. Journal of Alloys and Compounds, 2018. 744: p. 528-534.
19.Mathon, J. and A. Umerski, Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction. Physical Review B, 2001. 63(22): p. 220403.
20.Chen, Y.-T. and W. Hsieh, Thermal, magnetic, electric, and adhesive properties of amorphous Co60Fe20B20 thin films. Journal of alloys and compounds, 2013. 552: p. 283-288.
21.Hamdi, S., et al., Enhancing the structural, optical and electrical conductivity properties of ZnO nanopowders through Dy doping. Inorganic Chemistry Communications, 2022: p. 109819.
22.Tsymbal, E.Y. and I. Zutic, Spin transport and magnetism. 2012: CRC press.
23.Zabel, H. and M. Farle, Magnetic nanostructures: spin dynamics and spin transport. Vol. 246. 2012: Springer.
24.Julliere, M., Tunneling between ferromagnetic films. Physics letters A, 1975. 54(3): p. 225-226.
25.Ikeda, S., et al., Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in Co Fe B∕ Mg O∕ Co Fe B pseudo-spin-valves annealed at high temperature. Applied Physics Letters, 2008. 93(8): p. 082508.
26.Oguz, K. and J. Coey, Room-temperature magnetoresistance in CoFeB/STO/CoFeB magnetic tunnel junctions. Journal of magnetism and magnetic materials, 2009. 321(8): p. 1009-1011.
27.Mantovan, R., et al., Perpendicular magnetic anisotropy in Ta/CoFeB/MgO systems synthesized on treated SiN/SiO2 substrates for magnetic memories. Thin Solid Films, 2013. 533: p. 75-78.
28.Wang, Y., et al., The role of inhomogeneity of perpendicular anisotropy in magnetic properties of ultra thin CoFeB film. Journal of Applied Physics, 2014. 115(5): p. 053901.
29.Kipgen, L., et al., In-plane magnetic anisotropy and coercive field dependence upon thickness of CoFeB. Journal of magnetism and magnetic materials, 2012. 324(19): p. 3118-3121.
30.Gayen, A., et al., Effects of composition, thickness and temperature on the magnetic properties of amorphous CoFeB thin films. Journal of Alloys and Compounds, 2017. 694: p. 823-832.
31.Teixeira, J., et al., Domain imaging, MOKE and magnetoresistance studies of CoFeB films for MRAM applications. Materials Science and Engineering: B, 2006. 126(2-3): p. 180-186.
32.Dimopoulos, T., et al., Thermal annealing of junctions with amorphous and polycrystalline ferromagnetic electrodes. Journal of applied physics, 2004. 96(11): p. 6382-6386.
33.Sharma, P., et al., Temperature and thickness driven spin-reorientation transition in amorphous Co-Fe-Ta-B thin films. Physical Review B, 2006. 73(5): p. 052401.
34.Lakshmanan, S., et al., Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces. Journal of Magnetism and Magnetic Materials, 2017. 435: p. 81-86.
35.Xu, Z. and L. Qin, Effects of sputtering parameters and annealing temperatures on magnetic properties of CoFeB films. Journal of Magnetism and Magnetic Materials, 2021. 538: p. 168302.
36.Xie, H., et al., Effect of substrate roughness on the magnetic properties of CoFeB films. Journal of Magnetism and Magnetic Materials, 2018. 461: p. 19-22.
37.Armstrong, F. and W. Teo, Electricity and magnetism. Anaesthesia & Intensive Care Medicine, 2020. 21(5): p. 252-255.
38.Williams, D., N.G. Mandal, and A. Sharma, Electricity and magnetism. Anaesthesia & Intensive Care Medicine, 2011. 12(9): p. 423-425.
39.Roe, J. and S. Roberts, Electricity and magnetism. Anaesthesia & Intensive Care Medicine, 2023.
40.Cheng, D.K., Field and Wave Electromagnetics,3rd ed,Addison-Wesley,New York. 1989.
41.C.Kittel, Introduction of Solid State Phys,7th ed,John Wiley & Sons inc,New York.
42.B.D.Cullity, Introduction to Magnetic Materials,Addison Wesley,New York. 1972.
43.Aharoni, A., Introduction to the Theory of Ferromagnetism. Vol. 109. 2000: Clarendon Press.
44.Sundaresan, A. and C. Rao, Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today, 2009. 4(1): p. 96-106.
45.姜寿亭 and 李卫, 凝聚态磁性物理. Vol. 10. 2003: 科学出版社.
46.柳育騏, 鈷鐵釔薄膜經熱處理後之特性研究,國立雲林科技大學,碩士論文, 民國111年.
47.Chikazumi, S. and C.D. Graham, Physics of ferromagnetism. 1997: Oxford university press.
48.Smart, J.S., The Néel theory of ferrimagnetism. American Journal of Physics, 1955. 23(6): p. 356-370.
49.Néel, L., Antiferromagnetism and ferrimagnetism. Proceedings of the Physical Society. Section A, 1952. 65(11): p. 869.
50.Pippard, A.B., Magnetoresistance in metals. Vol. 2. 1989: Cambridge university press.
51.Paraskevopoulos, D., R. Meservey, and P. Tedrow, Spin polarization of electrons tunneling from 3 d ferromagnetic metals and alloys. Physical Review B, 1977. 16(11): p. 4907.
52.Tedrow, P. and R. Meservey, Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Physical Review B, 1973. 7(1): p. 318.
53.Venables, J., G. Spiller, and M. Hanbucken, Nucleation and growth of thin films. Reports on progress in physics, 1984. 47(4): p. 399.
54.楊偉仁, 以直流磁控及高功率脈衝磁控濺鍍之 TiO2光觸媒薄膜的特性分析比較,國立交通大學,博士論文. 民國102年.
55.周天一, 熱處理對矽基板上的鈷鐵鎢(Co40Fe40W20)薄膜之特性研究,國立雲林科技大學,碩士論文, 民國110年.
56.Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
57.林浩揚, “鎢下電極對磁穿隧結構磁特性的影響ȹ,國立雲林科技大學材
料科技研究所碩士論文, 民國 105 年.
58.Porte, G., Tilted alignment of MBBA induced by short-chain surfactants. Journal de Physique, 1976. 37(10): p. 1245-1252.
59.磁量生技股份有限公司,變頻磁導分析儀XacQuan操作與維修手冊,, 民國97年.
60.Zhang, H., et al., Tuning the magnetic anisotropy of CoFeB grown on flexible substrates. Chinese Physics B, 2015. 24(7): p. 077501.
61.Stamate, E., Lowering the resistivity of aluminum doped zinc oxide thin films by controlling the self-bias during RF magnetron sputtering. Surface and Coatings Technology, 2020. 402: p. 126306.
62.Consiglio, R., et al., The nano-scratch tester (NST) as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films. Thin Solid Films, 1998. 332(1-2): p. 151-156.
63.Lampke, T., et al., Details of crystalline growth in co-deposited electroplated nickel films with hard (nano) particles. Applied Surface Science, 2006. 253(5): p. 2399-2408.
64.Mussert, K., et al., A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061-Al 2 O 3 MMC. Journal of materials science, 2002. 37: p. 789-794.
65.Grütter, P., et al., Application of atomic force microscopy to magnetic materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1988. 6(2): p. 279-282.
66.Santoyo-Salazar, J., M. Castellanos-Roman, and L.B. Gómez, Structural and magnetic domains characterization of magnetite nanoparticles. Materials Science and Engineering: C, 2007. 27(5-8): p. 1317-1320.
67.Sreethawong, T., et al., A simple route utilizing surfactant-assisted templating sol–gel process for synthesis of mesoporous Dy2O3 nanocrystal. Journal of colloid and interface science, 2006. 300(1): p. 219-224.
68.Abu-Zied, B.M. and A.M. Asiri, Synthesis of Dy2O3 nanoparticles via hydroxide precipitation: effect of calcination temperature. Journal of Rare Earths, 2014. 32(3): p. 259-264.
69.Kharmouche, A., et al., Structural and magnetic properties of evaporated Co/Si (100) and Co/glass thin films. Journal of Physics D: Applied Physics, 2004. 37(18): p. 2583.
70.Chen, Y.-T., S. Lin, and Y. Lin, Effect of low-frequency alternative-current magnetic susceptibility in Ni80Fe20 thin films. Journal of Nanomaterials, 2012. 2012: p. 39-39.
71.Chen, Y.-T. and Z. Chang, Low-frequency alternative-current magnetic susceptibility of amorphous and nanocrystalline Co60Fe20B20 films. Journal of Magnetism and Magnetic Materials, 2012. 324(14): p. 2224-2226.
72.Ke, Y., et al., Resistivity of thin Cu films with surface roughness. Physical Review B, 2009. 79(15): p. 155406.
73.Marom, H. and M. Eizenberg, The effect of surface roughness on the resistivity increase in nanometric dimensions. Journal of applied physics, 2006. 99(12): p. 123705.
74.Das, C. and P. Alagarsamy, Tuning the magnetic properties of stripe domain structured CoFeB films using stack structure with spacer layer thickness dependent interlayer coupling. Journal of Magnetism and Magnetic Materials, 2018. 448: p. 23-30.
75.Tang, Z., et al., Thickness dependence of magnetic anisotropy and domains in amorphous Co40Fe40B20 thin films grown on PET flexible substrates. Journal of Magnetism and Magnetic Materials, 2017. 426: p. 444-449.
76.Ha, Y., et al., Effect of substrate roughness and film thickness on the magnetic properties of CoFeB films on polymer substrate. Vacuum, 2021. 191: p. 110399.
77.Sun, B., et al., Perpendicular coercive force of thick CoFeB thin films grown on silicon substrate. Materials Letters, 2014. 123: p. 221-223.
78.Wang, S., et al., Improving the composition and multifunctional properties of amorphous boron nitride films prepared by post-annealing assisted femtosecond pulsed laser deposition method. Ceramics International, 2023.
79.Zeng, H., W.R. Lacefield, and S. Mirov, Structural and morphological study of pulsed laser deposited calcium phosphate bioceramic coatings: influence of deposition conditions, laser parameters, and target properties. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2000. 50(2): p. 248-258.
80.Vangolu, Y. and M.T. Yurtcan, Wear and corrosion properties of wollastonite and boron nitride doped, hydroxyapatite-based HAp-Wo-BN composite coatings prepared by pulsed laser deposition. Ceramics International, 2021. 47(23): p. 32969-32978.
81.Wenzel, R.N., Surface roughness and contact angle. The Journal of Physical Chemistry, 1949. 53(9): p. 1466-1467.
82.Bikerman, J., The Surface Roughness and Contact Angle. The Journal of Physical Chemistry, 1950. 54(5): p. 653-658.
83.Zenkin, S., et al., Thickness dependent wetting properties and surface free energy of HfO2 thin films. Applied Physics Letters, 2016. 108(23): p. 231602.
84.McHale, G., M. Newton, and N. Shirtcliffe, Water‐repellent soil and its relationship to granularity, surface roughness and hydrophobicity: a materials science view. European Journal of Soil Science, 2005. 56(4): p. 445-452.
85.Madadi, F., et al., Influence of surface roughness and hydrophobicity of bipolar plates on PEM performance. Surface and Coatings Technology, 2020. 389: p. 125676.
86.梁燕, et al., 稀土 Dy 对 Cu-Cr-Ti 合金时效态组织和性能的影响. 材料科学与工艺, 2010(5): p. 614-618.
87.Tung, H.-M., et al., Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Materials Science and Engineering: A, 2009. 500(1-2): p. 104-108.
88.Kapustianyk, V., et al., Influence of size effect and sputtering conditions on the crystallinity and optical properties of ZnO thin films. Optics Communications, 2007. 269(2): p. 346-350.
89.Heavens, O., Optical properties of thin films. Reports on Progress in Physics, 1960. 23(1): p. 1.
90.Aspnes, D.E., Optical properties of thin films. Thin solid films, 1982. 89(3): p. 249-262.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊