跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 22:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施堯鈞
研究生(外文):SHI, YAO-JUN
論文名稱:輕型電動車充電器具寬輸出電壓範圍之DC/DC轉換器研製
論文名稱(外文):Development of a Wide Output Voltage Range DC/DC Converter for Light Electric Vehicle Charger
指導教授:林伯仁
指導教授(外文):LIN, BOR-REN
口試委員:陳俊吉黃建嵐
口試委員(外文):CHEN, JYUN-JIHUANG, CHIEN-LAN
口試日期:2023-07-05
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:124
中文關鍵詞:非對稱返馳式轉換器輕型電動車充電寬輸出電壓範圍
外文關鍵詞:APWM flybackLEV chargingwide output voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:0
隨著輕型電動車的快速發展,不同種類的車款所需的充電器也不盡相同,為了能夠節省成本又能達到環保要求,因此本論文提出一具寬輸出電壓範圍之電源轉換器,能夠針對多種輕型電動車充電使用,此外在輸入電壓的規格設計上,則可搭配前級為功率因數校正電路或是直接連接直流微電網之後。
本論文提出之混合型非對稱返馳式轉換器,一次側採用全橋轉換器之架構,利用交流開關之導通並聯半橋轉換器,並根據不同的輸出電壓範圍,使得轉換器在半橋模式、全橋模式及混合模式進行切換,且因採用非對稱脈波寬度調變技術控制,使功率開關具有零電壓切換(ZVS)之特性來改善轉換器效率;二次側為兩組半波整流之串聯電路,不僅元件較少可降低成本,且透過交流開關切換,能讓輸出電壓提升,以拓寬輸出電壓範圍。
最後本論文將提出之轉換器透過模擬軟體以及數學軟體進行分析及驗證,成功製作原型機來驗證理論可行性。電路之電器規格為輸入電壓390V,輸出電壓範圍為12V~120V,最大輸出功率為1000W。
With the rapid development of light electric vehicles, the chargers required for different types of vehicles are not the same. In order to save costs and meet environmental requirements, this thesis proposes a power converter with a wide output voltage range that can be used for charging multiple types of light electric vehicles. In addition, in the design of the input voltage specifications, it can be paired with a power factor correction circuit or connected to a DC microgrid.
The proposed hybrid asymmetrical flyback converter uses a structure where a full-bridge converter is used on the primary side, and a parallel half-bridge converter is utilized through AC switch conduction. According to the different output voltage ranges, the converter can switch between half-bridge mode, full-bridge mode, and hybrid mode. Moreover, using the asymmetric pulse width modulation (APWM) technique for control, the power switches have zero-voltage switching (ZVS) characteristics to improve the converter efficiency. The secondary side consists of two sets of half-wave rectifier circuits in series, which not only reduce the number of components and lower cost, but also allow the output voltage to be increased and the output voltage range to be expanded through the switching of the AC switch.
Finally, the proposed converter in this thesis will be analyzed and verified through simulation software and mathematical software, and a prototype has been successfully implemented to demonstrate its feasibility. The electrical specifications of the circuit are as follows: the input voltage is 390V, the output voltage range is 12V~120V, and the maximum output power is 1000W.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
符號說明 xv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究內容 2
1.3 論文大綱 3
第二章 輕型電動車介紹及充電相關技術分析 4
2.1 各式輕型電動車介紹 4
2.1.1 電動機車 5
2.1.2 電動自行車/電動輔助自行車 5
2.1.3 電動滑板車/電動平衡車 6
2.1.4 社區型電動車 6
2.2 輕型電動車充電相關介紹 7
2.2.1 充電技術分析 7
2.2.2 充電技術架構 8
第三章 主電路架構、控制介紹及動作分析 12
3.1 主電路架構介紹 12
3.1.1 功率因數校正電路 12
3.1.2 混合型非對稱Flyback轉換器 13
3.2 主電路相關控制介紹 14
3.2.1 非對稱脈波寬度調變控制介紹 14
3.2.2 史密特觸發控制電路介紹 15
3.3 半橋模式電路動作分析 17
3.3.1 [動作模式一](t0~t1) 19
3.3.2 [動作模式二](t1~t2) 20
3.3.3 [動作模式三](t2~t3) 21
3.3.4 [動作模式四](t3~t4) 22
3.3.5 [動作模式五](t4~t5) 22
3.3.6 [動作模式六](t5~t6) 23
3.4 全橋模式電路動作分析 24
3.4.1 [動作模式一](t0~t1) 26
3.4.2 [動作模式二](t1~t2) 26
3.4.3 [動作模式三](t2~t3) 27
3.4.4 [動作模式四](t3~t4) 28
3.4.5 [動作模式五](t4~t5) 29
3.4.6 [動作模式六](t5~t6) 29
3.5 混合模式電路動作分析 30
3.5.1 [動作模式一](t0~t1) 32
3.5.2 [動作模式二](t1~t2) 33
3.5.3 [動作模式三](t2~t3) 34
3.5.4 [動作模式四](t3~t4) 35
3.5.5 [動作模式五](t4~t5) 36
3.5.6 [動作模式六](t5~t6) 37
第四章 電路元件設計 39
4.1 電路規格 39
4.2 電路元件參數設計與選用 39
4.2.1 功率變壓器T1、T2設計 40
4.2.2 諧振電感Lr1、Lr2設計 45
4.2.3 直流隔離電容Cb1、Cb2設計 45
4.2.4 功率開關元件S1~S4設計與選用 46
4.2.5 輸出整流二極體D1、D2與旁路二極體D3設計與選用 49
4.2.6 輸出濾波電容Co1、Co2設計與選用 50
4.2.7 交流開關Sac1、Sac2設計與選用 50
第五章 損耗分析與效率預估 52
5.1 功率變壓器T1損耗分析 52
5.2 功率變壓器T2損耗分析 53
5.3 功率開關元件S1~S4損耗分析 55
5.4 交流開關Sac1、Sac2損耗分析 55
5.5 輸出整流二極體D1、D2與旁路二極體D3損耗分析 56
5.6 混合型非對稱Flyback轉換器效率預估 56
第六章 模擬與實驗數據成果 61
6.1 混合型非對稱Flyback轉換器之實作規格 61
6.2 PSIM模擬波形 63
6.3 混合型非對稱Flyback轉換器實測波形 85
6.4 混合型非對稱Flyback轉換器實測責任週期 96
第七章 結論與未來展望 99
7.1 結論 99
7.2 未來展望 99
參考文獻 101
[1]行政院環境保護署,2022,2022年中華民國國家溫室氣體清冊報告,行政院全球資訊網。
[2]Application Note AN1273, “Compliance testing to the IEC 1000-3-2 (EN61000-3-2) and IEC 1000-3-3 (EN61000-3-3) Standard,” Aglient.
[3]Datasheet, 2023, “750W high reliable ultra wide output range intelligent battery charger NPB-750 series,” Mean Well, Taiwan.
[4]使用手冊,2020,GoCharger® Mobile Plus 隨車電池充電器快充版使用手冊,睿能創意股份有限公司,臺灣。
[5]使用手冊,2019,iE125車主使用手冊,中華汽車工業股份有限公司,臺灣。
[6]使用手冊,2017,電動自行車使用手冊,中華汽車工業股份有限公司,臺灣。
[7]使用手冊,2022,MY23_FASTER_Eplus使用說明書,捷安特,臺灣。
[8]Manual, 2022, “Ninebot eKickScooter ZING E8/E10/E12 user manual,” Segway, USA.
[9]Manual, 2020, “Inmotion V12 electric unicycle user manual,” Inmotion, Sweden.
[10]Manual, 2019, “Ninebot-S user manual,” Segway, USA.
[11]Manual, 2019, “QuiQ 912-48 series product manual,” Delta-Q, Canada.
[12]Manual, 2013, “QuiQ IC650 installation and design guide,” Delta-Q, Canada.
[13]軒廣電動車,2017,CH4300系列微電腦充電機產品介紹,軒廣電動車官方網站。
[14]D. H. Kim, M. S. Kim, S. Hussain Nengroo, C. H. Kim, and H. J. Kim, “LLC Resonant converter for LEV (light electric vehicle) fast chargers,” Electronics, vol. 8, no. 3, p. 362, 2019.
[15]R. Beyer, P. Freere, T. van Niekerk, and E. Sönmez, “Design of a universal charger for a light electric vehicle with effect of an RCD snubber on peak current control,” Proc. of 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), pp. 9-13, 2020.
[16]K. Singh, A. K. Mishra, B. Singh, and K. Sahay, “Cost-effective solar powered battery charging system for light electric vehicles (LEVs),” Proc. of 2019 International Conference on Computing, Power and Communication Technologies (GUCON), pp. 988-994, 2019.
[17]U. Sharma, and B. Singh, “An onboard charger for light electric vehicles,” Proc. of 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-6, 2020.
[18]V. M. Thasni, P. C. Unnikrishnan, and R. Rajagopal, “Single phase isolated converter for light electric vehicle charging with PFC and battery protection,” Proc. of 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 1721-1723, 2018.
[19]C. M. Lai, J. Teh, Y. H. Cheng, and Y. H. Li, “A reflex-charging based bidirectional DC charger for light electric vehicle and DC-microgrids,” Proc. of 2017 IEEE Region 10 Conference (TENCON), pp. 280-284, 2017.
[20]X. D. Gumera, A. Caberos, and S. C. Huang, “Design and implementation of a high efficiency cost effective EV charger using LLC resonant converter,” Proc. of 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), pp. 1-6, 2017.
[21]M. Feizi and R. Beiranvand, “An improved phase-shifted full-bridge converter with extended ZVS operation range for EV battery charger applications,” Proc. of 2010 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1-6, 2020.
[22]G. Kumar and B. Singh, “Dual-input single-stage isolated charger for light electric vehicles,” Proc. of 2021 IEEE International Power and Renewable Energy Conference (IPRECON), pp. 1-6, 2021.
[23]J. Gupta and B. Singh, “Single-stage isolated bridgeless charger for light electric vehicle with improved power quality,” IEEE Transactions on Industry Applications, vol. 58, no. 5, pp. 6357-6367, 2022.
[24]吳義利,2018,切換式電源轉換器,第三版,文笙書局,新北。
[25]B. R. Lin, C. C. Yang, and D. Wang, “Analysis, design and implementation of an asymmetrical half-bridge converter,” Proc. of 2005 IEEE International Conference on Industrial Technology (ICIT), pp. 1209-1214, 2005.
[26]彭義皓,2022,寬範圍輸出DC/DC轉換器設計用於電動車直流充電站,國立雲林科技大學,碩士論文。
[27]莊岳穎,2022,用於電動車充電樁之混合型寬輸出電壓範圍LLC諧振式轉換器研製,國立雲林科技大學,碩士論文。
[28]王尚倫,2014,非對稱式全橋轉換器之分析、設計與實作,國立雲林科技大學,碩士論文。
[29]Datasheet, 2003, “UCC2893 current mode active clamp PWM controller,” TEXAS INSTRUMENTS, USA.
[30]T. M. Chen and C. L. Chen, “Analysis and design of asymmetrical half bridge flyback converter,” IET Electric Power Appl, vol. 149, no. 6, pp. 433–440, 2002.
[31]徐雅雯,2022,應用於輕型電動車充電之寬輸出電壓範圍APWM非對稱式轉換器研製,國立雲林科技大學,碩士論文。
[32]Datasheet, 2010, “Ferrite core-TDK core material characteristics,” TDK, Japan.
[33]Datasheet, 2010, “Ferrite core-TDK core EE cores,” TDK, Japan.
[34]Datasheet, 2008, “Power transistor IPI90R500C3,” Infineon, Germany.
[35]Datasheet, 2003, “High frequency secondary rectifier STTH2003,” STMicroelectronics, USA.
[36]Datasheet, 2014, “Power transistor IPW60R070P6,” Infineon, Germany.
[37]Datasheet, 2010, “Ferrite core-TDK core core loss (typical),” TDK, Japan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top