|
1.J.-M. Tarascon , M. Armand , Issues and challenges facing rechargeable lithium batteries , Materials for Sustainable Energy, pp. 171-179 (2010) 2.Peichao Lian, Xuefeng Zhu, Hongfa Xiang, Zhong Li, Weishen Yang, Haihui Wang, Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries, Electrochimica Acta, Volume 56, Issue 2, 2010, Pages 834-840 3.Akkisetty Bhaskar, Melepurath Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries, Journal of Power Sources, Volume 216, 2012, Pages 169-178 4.Xia He, Yi Hu, Zhen Shen, Renzhong Chen, Keshi Wu, Zhongling Cheng, Xiang Wu Zhang, Peng Pan, Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries, Journal of Alloys and Compounds, Volume 729, 2017, Pages 313-322 5.Ding, Y., Cano, Z.P., Yu, A. et al. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energ. Rev. 2, 1–28 (2019). 6.Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. nature, 414(6861), 359-367. 7.Arun Mambazhasseri Divakaran, Manickam Minakshi, Parisa Arabzadeh Bahri, Shashi Paul, Pooja Kumari, Anoop Mambazhasseri Divakaran, Krishna Nama Manjunatha, Rational design on materials for developing next generation lithium-ion secondary battery, Progress in Solid State Chemistry, Volume 62, 2021, 100298, ISSN 0079-6786 8.Hightech(2020年12月1日)鋰離子電池(Lithium ion battery)的原理、特性與應用。StockFeel。https://www.stockfeel.com.tw/%E9%8B%B0%E9%9B%A2%E5%AD%90%E9%9B%BB%E6%B1%A0%EF%BC%88lithium-ion-battery%EF%BC%89%E7%9A%84%E5%8E%9F%E7%90%86%E3%80%81%E7%89%B9%E6%80%A7%E8%88%87%E6%87%89%E7%94%A8/ 9.Yu-Shiang Wu, Chun-Lin Wu, Yan-Ming Chang, Development and Improvement of the Lithium Ion Battery Negative Material Surface Modification, Journal of China Institute of Technology Vol.31-2004.12 10.Charles de las Casas, Wenzhi Li, A review of application of carbon nanotubes for lithium ion battery anode material, Journal of Power Sources, Volume 208, 2012, Pages 74-85, ISSN 0378-7753 11.Y.P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries, Journal of Power Sources, Volume 114, Issue 2, 2003, Pages 228-236, ISSN 0378-7753 12.Daiyun Song, Shanshan Wang, Ruizhe Liu, Jinlong Jiang, Yong Jiang, Shoushuang Huang, Wenrong Li, Zhiwen Chen, Bing Zhao, Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material, Applied Surface Science, Volume 478, 2019, Pages 290-298, ISSN 0169-4332 13.Xifei Li, Jian Liu, Yong Zhang, Yongliang Li, Hao Liu, Xiangbo Meng, Jinli Yang, Dongsheng Geng, Dongniu Wang, Ruying Li, Xueliang Sun, High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application, Journal of Power Sources, Volume 197, 2012, Pages 238-245, ISSN 0378-7753 14.Dan Li, Dongqi Shi, Zhixin Chen, Huakun Liu, Dianzeng Jia, Zaiping Guo, Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries, RSC Advances, Issue 15, 2013 15.Renfeng Nie, Juanjuan Shi, Weichen Du, Wensheng Ning, Zhaoyin Hou, Feng-Shou Xiao, A sandwich N-doped graphene/Co3O4 hybrid: an efficient catalyst for selective oxidation of olefins and alcohols, Journal of Materials Chemistry A, Issue 32, 2013 16.Haifeng Xu, Lianbo Ma, Zhong Jin, Nitrogen-doped graphene: Synthesis, characterizations and energy applications, Journal of Energy Chemistry, Volume 27, Issue 1, 2018, Pages 146-160, ISSN 2095-4956 17.Peichao Lian, Xuefeng Zhu, Hongfa Xiang, Zhong Li, Weishen Yang, Haihui Wang, Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries, Electrochimica Acta, Volume 56, Issue 2, 2010, Pages 834-840 18.Akkisetty Bhaskar, Melepurath Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries, Journal of Power Sources, Volume 216, 2012, Pages 169-178 19.Xia He, Yi Hu, Zhen Shen, Renzhong Chen, Keshi Wu, Zhongling Cheng, Xiang Wu Zhang, Peng Pan, Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries, Journal of Alloys and Compounds, Volume 729, 2017, Pages 313-322 20.Arun Mambazhasseri Divakaran, Manickam Minakshi, Parisa Arabzadeh Bahri, Shashi Paul, Pooja Kumari, Anoop Mambazhasseri Divakaran, Krishna Nama Manjunatha, Rational design on materials for developing next generation lithium-ion secondary battery, Progress in Solid State Chemistry, Volume 62, 2021, 100298, ISSN 0079-6786 21.Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E., & Novák, P. (2005). High rate capability of graphite negative electrodes for lithium-ion batteries. Journal of the Electrochemical Society, 152(2), A474. 22.Yuan, Xianxia, Hansan Liu, and Jiujun Zhang, eds. Lithium-ion batteries: advanced materials and technologies. CRC press, 2011. 23.Qi, W., Shapter, J. G., Wu, Q., Yin, T., Gao, G., & Cui, D. (2017). Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 5(37), 19521-19540. 24.Berrueta, A., Urtasun, A., Ursúa, A., & Sanchis, P. (2018). A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model. Energy, 144, 286-300. 25.Liu, H., Wei, Z., He, W., & Zhao, J. (2017). Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy conversion and management, 150, 304-330. 26.Zhang, X. (2011). Thermal analysis of a cylindrical lithium-ion battery. Electrochimica Acta, 56(3), 1246-1255. 27.Wu, Q., Zhang, B., & Lu, Y. (2022). Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries. Journal of Energy Chemistry. 28.Chen, H., Qiu, X., Zhu, W., & Hagenmuller, P. (2002). Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery. Electrochemistry communications, 4(6), 488-491. 29.高濂,孫靜,劉陽橋(民94)。奈米粉體的分散及表面改性。台北市:五南圖書。 30.成會明(民93)。奈米碳管。台北市:五南圖書。P550~P567 31.Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3), 61-102. 32.Ibrahim, K. S. (2013). Carbon nanotubes? properties and applications: A review. Carbon letters, 14(3), 131-144. 33.Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3), 61-102. 34.Arora, N., & Sharma, N. N. (2014). Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and related materials, 50, 135-150. 35.Kim, H. H., & Kim, H. J. (2006). The preparation of carbon nanotubes by dc arc discharge using a carbon cathode coated with catalyst. Materials Science and Engineering: B, 130(1-3), 73-80. 36.Liang, Feng, et al. "Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure." Diamond and Related Materials 30 (2012): 70-76. 37.Lijima, S., Ichihashi, T., & Ando, Y. (1992). Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature, 356(6372), 776-778. 38.Kharlamova, M. V. (2017). Investigation of growth dynamics of carbon nanotubes. Beilstein journal of nanotechnology, 8(1), 826-856. 39.Gakis, G. P., Termine, S., Trompeta, A. F. A., Aviziotis, I. G., & Charitidis, C. A. (2022). Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. Chemical Engineering Journal, 445, 136807. 40.Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48(8), 2127-2150. 41.Tiwari, S. K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10-29. 42.郭信良、劉偉仁(2009年10月)。工業材料雜誌274期-石墨烯的發展與應用(上)。新竹縣:工研院材化所。 43.Zhang, X., Hou, L., Ciesielski, A., & Samorì, P. (2016). 2D materials beyond graphene for high‐performance energy storage applications. Advanced Energy Materials, 6(23), 1600671. 44.Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 3(22), 11700-11715. 45.Liu, M., Zhang, X., Wu, W., Liu, T., Liu, Y., Guo, B., & Zhang, R. (2019). One-step chemical exfoliation of graphite to∼ 100% few-layer graphene with high quality and large size at ambient temperature. Chemical Engineering Journal, 355, 181-185. 46.Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. (2006). Graphene-based composite materials. nature, 442(7100), 282-286. 47.Zhang, Y. I., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of chemical research, 46(10), 2329-2339. 48.Zhang, X., Wang, L., Xin, J., Yakobson, B. I., & Ding, F. (2014). Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. Journal of the American Chemical Society, 136(8), 3040-3047. 49.Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental Science, 4(4), 1113-1132. 50.Wang, D. W., Li, F., Yin, L. C., Lu, X., Chen, Z. G., Gentle, I. R., ... & Cheng, H. M. (2012). Nitrogen‐doped carbon monolith for alkaline supercapacitors and understanding nitrogen‐induced redox transitions. Chemistry–A European Journal, 18(17), 5345-5351. 51.Czerw, R., Terrones, M., Charlier, J. C., Blase, X., Foley, B., Kamalakaran, R., ... & Carroll, D. L. (2001). Identification of electron donor states in N-doped carbon nanotubes. Nano letters, 1(9), 457-460. 52.Wu, Z. S., Ren, W., Xu, L., Li, F., & Cheng, H. M. (2011). Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS nano, 5(7), 5463-5471. 53.Li, X., Geng, D., Zhang, Y., Meng, X., Li, R., & Sun, X. (2011). Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 13(8), 822-825. 54.Meyyappan, M., Delzeit, L., Cassell, A., & Hash, D. (2003). Carbon nanotube growth by PECVD: a review. Plasma sources science and technology, 12(2), 205. 55.Yi, K., Liu, D., Chen, X., Yang, J., Wei, D., Liu, Y., & Wei, D. (2021). Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Accounts of Chemical Research, 54(4), 1011-1022. 56.Martinu, L., Zabeida, O., & Klemberg-Sapieha, J. E. (2010). Plasma-enhanced chemical vapor deposition of functional coatings. Handbook of deposition technologies for films and coatings, 392-465. 57.J.-M. Tarascon , M. Armand , Issues and challenges facing rechargeable lithium batteries , Materials for Sustainable Energy, pp. 171-179 (2010) 58.Peichao Lian, Xuefeng Zhu, Hongfa Xiang, Zhong Li, Weishen Yang, Haihui Wang, Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries, Electrochimica Acta, Volume 56, Issue 2, 2010, Pages 834-840 59.Akkisetty Bhaskar, Melepurath Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries, Journal of Power Sources, Volume 216, 2012, Pages 169-178 60.Xia He, Yi Hu, Zhen Shen, Renzhong Chen, Keshi Wu, Zhongling Cheng, Xiang Wu Zhang, Peng Pan, Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries, Journal of Alloys and Compounds, Volume 729, 2017, Pages 313-322 61.J. Ye, J. Zhang, F. Wang, Q. Su, G. Du, One-pot synthesis of Fe2O3/graphene and its lithium-storage performance, Electrochim. Acta, 113 (2013), pp. 212-217 62.Xiannian Chi, Ling Chang, Dong Xie, Jun Zhang, Gaohui Du, Hydrothermal preparation of Co3O4/graphene composite as anode material for lithium-ion batteries, Materials Letters, Volume 106, 2013, Pages 178-181 63.Da Chen, Ran Yi, Shuru Chen, Terrence Xu, Mikhail L. Gordin, Dongping Lv, Donghai Wang, Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries, Materials Science and Engineering: B, Volume 185, 2014, Pages 7-12, 64.Qian Yang, Qiang Liang, Jun Liu, Shuquan Liang, Shasha Tang, Peijie Lu, Yakun Lu, Ultrafine MoO2 nanoparticles grown on graphene sheets as anode materials for lithium-ion batteries, Materials Letters, Volume 127, 2014, Pages 32-35, 65.Mingyan Li, Bitao Dong, Guoxin Gao, Shujiang Ding, Synthesis of nickel oxide/reduced graphene oxide composite with nanosheet-on-sheet nanostructure for lithium-ion batteries, Materials Letters, Volume 155, 2015, Pages 30-33, 66.Haiping Jia, Richard Kloepsch , Xin He, Juan Pablo Badillo, Martin Winter, Tobias Placke, One-step synthesis of novel mesoporous threedimensional GeO2 and its lithium storage properties, J. Mater. Chem. A, 2014, 2, 17545 67.Xiong, Qin-qin and Tu, Jiang-ping and Xia, Xin-hui and Zhao, Xu-yang and Gu, Chang-dong and Wang, Xiu-li, A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries, Nanoscale, 2013, 5(17), 7906-7912 68.Hou, Q., Man, Q., Liu, P., Jin, R., Cui, Y., Li, G., & Gao, S. (2019). Encapsulation of Fe2O3/NiO and Fe2O3/Co3O4 nanosheets into conductive polypyrrole for superior lithium ion storage. Electrochimica Acta, 296, 438-449. 69.Chen, Y., Cai, R., Yang, Y., Liu, C., Yuan, A., Yang, H., & Shen, X. (2017). Cyanometallic frameworks derived hierarchical porous Fe2O3/NiO microflowers with excellent lithium-storage property. Journal of Alloys and Compounds, 698, 469-475. 70.Byrappa, K., & Adschiri, T. (2007). Hydrothermal technology for nanotechnology. Progress in crystal growth and characterization of materials, 53(2), 117-166. 71.Ward, D. A., & Ko, E. I. (1995). Preparing catalytic materials by the sol-gel method. Industrial & engineering chemistry research, 34(2), 421-433.. 72.Smentkowski, V. S. (2000). Trends in sputtering. Progress in Surface Science, 64(1-2), 1-58. 73.Gomes, A., Fernández, B., Pereira, I., & Pereiro, R. (2011). Electrodeposition of metal matrix nanocomposites: improvement of the chemical characterization techniques. INTECH Open Access Publisher. 74.Yuan, Y. F., Xia, X. H., Wu, J. B., Chen, Y. B., Yang, J. L., & Guo, S. Y. (2011). Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochimica Acta, 56(3), 1208-1212. 75.Zhao, D. D., Xu, M. W., Zhou, W. J., Zhang, J., & Li, H. L. (2008). Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochimica Acta, 53(6), 2699-2705. 76.Yousefi, T., Golikand, A. N., & Mashhadizadeh, M. H. (2013). Synthesis of iron oxide nanoparticles at low bath temperature: Characterization and energy storage studies. Materials science in semiconductor processing, 16(6), 1837-1841. 77.Yousefi, T., Davarkhah, R., Golikand, A. N., Mashhadizadeh, M. H., & Abhari, A. (2013). Facile cathodic electrosynthesis and characterization of iron oxide nano-particles. Progress in Natural Science: Materials International, 23(1), 51-54. 78.Thomsen, C., & Reich, S. (2000). Double resonant Raman scattering in graphite. Physical review letters, 85(24), 5214. 79.Kaniyoor, A., Jafri, R. I., Arockiadoss, T., & Ramaprabhu, S. (2009). Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 1(3), 382-386. 80.Dresselhaus, M. S., Dresselhaus, G., & Hofmann, M. (2008). Raman spectroscopy as a probe of graphene and carbon nanotubes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1863), 231-236. 81.Yang, M. M., Xu, X. J., Li, S. P., Liu, W., Liu, J. L., Wang, X. B., ... & Liang, B. L. (2022). Determining layer number of micro-mechanical exfoliated and CVD grown ultrathin graphenes by the methods of Raman intensity ratio. Optik, 258, 168902. 82.汪建民主編,材料分析,中國材料科學學會,新竹市,民國 87 83.Sjöström, H., Stafström, S., Boman, M., & Sundgren, J. E. (1995). Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Physical Review Letters, 75(7), 1336. 84.Zhao, Y., Zhai, X., Yan, D., Ding, C., Wu, N., Su, D., ... & Jin, H. (2017). Rational construction the composite of graphene and hierarchical structure assembled by Fe2O3 nanosheets for lithium storage. Electrochimica Acta, 243, 18-25. 85.Kuang, P., Zhang, L., Cheng, B., & Yu, J. (2017). Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Applied Catalysis B: Environmental, 218, 570-580. 86.Liu, T., Jiang, C., Cheng, B., You, W., & Yu, J. (2017). Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. Journal of Power Sources, 359, 371-378. 87.Ambade, R. B., Lee, H., Lee, K. H., Lee, H., Veerasubramani, G. K., Kim, Y. B., & Han, T. H. (2022). Ultrafast flashlight sintered mesoporous NiO nanosheets for stable asymmetric supercapacitors. Chemical Engineering Journal, 436, 135041. 88.Huang, W., Ding, S., Chen, Y., Hao, W., Lai, X., Peng, J., ... & Li, X. (2017). 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Scientific reports, 7(1), 5220. 89.Preda, I., Mossanek, R. J. O., Abbate, M., Alvarez, L., Méndez, J., Gutiérrez, A., & Soriano, L. (2012). Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG. Surface science, 606(17-18), 1426-1430. 90.Hao, S., Wang, H., Yang, R., Liu, D., Liu, X., Zhang, Q., & Chen, X. (2021). Corn-like mesoporous SnO2/α-Fe2O3 heterostructure for superior TEA sensing performance. Applied Physics A, 127, 1-11. 91.Wang, J. C., Ren, J., Yao, H. C., Zhang, L., Wang, J. S., Zang, S. Q., ... & Li, Z. J. (2016). Synergistic photocatalysis of Cr (VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. Journal of Hazardous Materials, 311, 11-19. 92.Li, Y. F., Zhou, Z., & Wang, L. B. (2008). CNx nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials. The Journal of chemical physics, 129(10). 93.Fan, Z., Liang, J., Yu, W., Ding, S., Cheng, S., Yang, G., ... & Kumar, R. V. (2015). Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy, 16, 152-162.
|