跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳仕軒
研究生(外文):CHEN, SHI-XUAN
論文名稱:氮摻雜奈米碳管/石墨烯複合材料以恆電流陰極電沉積披覆氧化鐵/氧化鎳作為鋰離子電池之負極材料
論文名稱(外文):Nitrogen-Doped Carbon Nanotubes/Graphene Composite Coated with Iron Oxide and Nickel Oxide Through Galvanostatic Cathodic Electrodeposition for Anode Materials of Lithium-ion
指導教授:林春強林春強引用關係
指導教授(外文):LIN, CHUEN-CHANG
口試委員:林春強吳子和胡啟章
口試委員(外文):LIN, CHUEN-CHANGWU, TZU-HOHU, CHI-CHANG
口試日期:2023-05-19
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:84
中文關鍵詞:鋰離子電池
外文關鍵詞:lithium-ion battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究為了探討對鋰離子電池陰極材料信行改質所造成之影響,使用化學氣相沉積法(CVD)一步驟合成奈米碳管/石墨烯複合材料於泡沫鎳基材表面。為了提升電極材料的電化學性質,依序使用了電漿化學氣相沉積法(RECVD)與電沉積等方式對陰極材料進行改質。電漿化學氣象沉積法為使用氮電漿轟擊碳材以達到氮摻雜改質之目的。接著使用恆電流陰極電沉積將鐵與鎳的氫氧化物披覆於電極材料上,並改變電沉積的電流密度與時間等以尋找最佳之改質參數;再將樣品至於氬氣環境中進行熱處理,使氫氧化物轉變為氧化鐵/氧化鎳混合物,最終製得有/無氮摻雜之奈米碳管/石墨烯/氧化鐵/氧化鎳複合電極材料。之後就由拉曼光譜分析(Raman)與X-射線電子光譜(XPS)檢測樣品之元素與鍵結結構。為了瞭解樣品之電化學性質,將複合電極材料(正極)與鋰箔(負極)組成鋰離子半電池,進行循環充放電、循環伏安法(CV)、倍率性能測試與電化學阻抗測試(EIS),再輔以掃描式電子顯微鏡(SEM)與原子力顯微鏡(AFM),進一步的了解複合電極材料之電化學性質。最終在未氮摻雜、電沉積參數為電流密度1 mA沉積時間450秒下製倍之複合電極材料有較佳之電化學性質,其第2圈與第20圈之放電電容量分別為514.05與523.95 mAh/g。
In this study, in order to investigate the influence of the modification of the cathode material of lithium-ion batteries, a carbon nanotube/graphene composite material was synthesized on the surface of the nickel foam substrate by chemical vapor deposition (CVD) in one step. In order to improve the electrochemical properties of the electrode material, the cathode material was modified by plasma chemical vapor deposition (RECVD) and electrodeposition in sequence. The plasma chemical vapor deposition method uses nitrogen plasma to bombard carbon materials to achieve the purpose of nitrogen doping modification. Then use constant current cathodic electrodeposition to coat iron and nickel hydroxide on the electrode material, and change the current density and time of electrodeposition to find the best modification parameters; then place the sample in an argon atmosphere Heat treatment to convert the hydroxide into a mixture of iron oxide/nickel oxide, and finally obtain a composite electrode material of carbon nanotubes/graphene/iron oxide/nickel oxide with or without nitrogen doping. Afterwards, the elements and bonding structures of the samples were detected by Raman spectroscopy (Raman) and X-ray electron spectroscopy (XPS). In order to understand the electrochemical properties of the samples, the composite electrode material (positive electrode) and lithium foil (negative electrode) were used to form a lithium-ion half-cell, which was subjected to cycle charge and discharge, cyclic voltammetry (CV), rate performance test and electrochemical impedance test (EIS ), supplemented by scanning electron microscopy (SEM) and atomic force microscopy (AFM), to further understand the electrochemical properties of composite electrode materials. Finally, the composite electrode material prepared under the conditions of no nitrogen doping and electrodeposition parameters of current density 1 mA deposition time 450 seconds has better electrochemical properties, and the discharge capacity of the second cycle and the 20th cycle are 514.05 and 523.95 mAh/g respectively.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2研究方向與目標 4
第二章 文獻回顧及理論 6
2.1 鋰二次電池 6
2.2 鋰電池的發展與原理 7
2.3鋰鈷氧化物的簡介 8
2.4奈米碳管的簡介: 9
2.4.1奈米碳管之性質: 10
2.4.2奈米碳管的製備方法: 10
2.5 石墨烯的簡介 14
2.5.1石墨烯的性質 15
2.5.2石墨烯的製備: 16
2.6 氮摻雜碳材介紹 18
2.6.1氮摻雜材料在鋰離子電池的應用 19
2.7電漿化學氣相沉積的介紹 20
2.8金屬氧化物用於鋰離子電池之文獻探討 21
2.8.1金屬氧化物之文獻探討 21
2.8.2氧化鐵、氧化鎳/炭材複合材料作為鋰離子電池電極之文獻回顧 24
2.9 金屬氧化物的製備與文獻 27
2.9.1 氧化鐵、氧化鎳電沉積之文獻探討 28
第三章 實驗 30
3.1實驗流程圖 30
3.2實驗藥品、設備與分析儀器 31
3.2.1實驗藥品 31
3.2.2實驗設備 31
3.2.3 實驗檢測儀器 32
3.3實驗步驟 33
3.3.1 基材前處理 33
3.3.2 CVD 成長奈米碳管/石墨烯複合材料 33
3.3.3 氮電漿改質奈米碳管/石墨烯複合材料 33
3.3.4 氧化鐵/氧化鎳修飾奈米碳管/石墨烯複合材料 34
3.4鋰電池組裝 34
第四章 結果與討論 37
4.1氮摻雜奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料元素分析 37
4.1.1氮摻雜奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料Raman光譜分析 37
4.1.2 氮摻雜奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料XPS分析 40
4.2 有/無氮摻雜奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料電化學分析 41
4.2.1奈米碳管/石墨烯複合材料之電化學分析 41
4.2.2有/無氮摻雜奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料之充放電分析 44
4.2.3奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料之循環伏安法測試 50
4.2.4奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料之倍率性能測試 51
4.2.5奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料之交流阻抗測試 52
4.3奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料之表面形貌分析 54
4.3.1奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料之SEM測試 54
4.3.2奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料之AFM測試 60
4.4奈米碳管/石墨烯/氧化鐵/氧化鎳複合材料之全電池測試 64
第五章 結論 66
參考文獻 67

1.J.-M. Tarascon , M. Armand , Issues and challenges facing rechargeable lithium batteries , Materials for Sustainable Energy, pp. 171-179 (2010)
2.Peichao Lian, Xuefeng Zhu, Hongfa Xiang, Zhong Li, Weishen Yang, Haihui Wang, Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries, Electrochimica Acta, Volume 56, Issue 2, 2010, Pages 834-840
3.Akkisetty Bhaskar, Melepurath Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries, Journal of Power Sources, Volume 216, 2012, Pages 169-178
4.Xia He, Yi Hu, Zhen Shen, Renzhong Chen, Keshi Wu, Zhongling Cheng, Xiang Wu Zhang, Peng Pan, Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries, Journal of Alloys and Compounds, Volume 729, 2017, Pages 313-322
5.Ding, Y., Cano, Z.P., Yu, A. et al. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energ. Rev. 2, 1–28 (2019).
6.Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. nature, 414(6861), 359-367.
7.Arun Mambazhasseri Divakaran, Manickam Minakshi, Parisa Arabzadeh Bahri, Shashi Paul, Pooja Kumari, Anoop Mambazhasseri Divakaran, Krishna Nama Manjunatha, Rational design on materials for developing next generation lithium-ion secondary battery, Progress in Solid State Chemistry, Volume 62, 2021, 100298, ISSN 0079-6786
8.Hightech(2020年12月1日)鋰離子電池(Lithium ion battery)的原理、特性與應用。StockFeel。https://www.stockfeel.com.tw/%E9%8B%B0%E9%9B%A2%E5%AD%90%E9%9B%BB%E6%B1%A0%EF%BC%88lithium-ion-battery%EF%BC%89%E7%9A%84%E5%8E%9F%E7%90%86%E3%80%81%E7%89%B9%E6%80%A7%E8%88%87%E6%87%89%E7%94%A8/
9.Yu-Shiang Wu, Chun-Lin Wu, Yan-Ming Chang, Development and Improvement of the Lithium Ion Battery Negative Material Surface Modification, Journal of China Institute of Technology Vol.31-2004.12
10.Charles de las Casas, Wenzhi Li, A review of application of carbon nanotubes for lithium ion battery anode material, Journal of Power Sources, Volume 208, 2012, Pages 74-85, ISSN 0378-7753
11.Y.P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries, Journal of Power Sources, Volume 114, Issue 2, 2003, Pages 228-236, ISSN 0378-7753
12.Daiyun Song, Shanshan Wang, Ruizhe Liu, Jinlong Jiang, Yong Jiang, Shoushuang Huang, Wenrong Li, Zhiwen Chen, Bing Zhao, Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material, Applied Surface Science, Volume 478, 2019, Pages 290-298, ISSN 0169-4332
13.Xifei Li, Jian Liu, Yong Zhang, Yongliang Li, Hao Liu, Xiangbo Meng, Jinli Yang, Dongsheng Geng, Dongniu Wang, Ruying Li, Xueliang Sun, High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application, Journal of Power Sources, Volume 197, 2012, Pages 238-245, ISSN 0378-7753
14.Dan Li, Dongqi Shi, Zhixin Chen, Huakun Liu, Dianzeng Jia, Zaiping Guo, Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries, RSC Advances, Issue 15, 2013
15.Renfeng Nie, Juanjuan Shi, Weichen Du, Wensheng Ning, Zhaoyin Hou, Feng-Shou Xiao, A sandwich N-doped graphene/Co3O4 hybrid: an efficient catalyst for selective oxidation of olefins and alcohols, Journal of Materials Chemistry A, Issue 32, 2013
16.Haifeng Xu, Lianbo Ma, Zhong Jin, Nitrogen-doped graphene: Synthesis, characterizations and energy applications, Journal of Energy Chemistry, Volume 27, Issue 1, 2018, Pages 146-160, ISSN 2095-4956
17.Peichao Lian, Xuefeng Zhu, Hongfa Xiang, Zhong Li, Weishen Yang, Haihui Wang, Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries, Electrochimica Acta, Volume 56, Issue 2, 2010, Pages 834-840
18.Akkisetty Bhaskar, Melepurath Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries, Journal of Power Sources, Volume 216, 2012, Pages 169-178
19.Xia He, Yi Hu, Zhen Shen, Renzhong Chen, Keshi Wu, Zhongling Cheng, Xiang Wu Zhang, Peng Pan, Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries, Journal of Alloys and Compounds, Volume 729, 2017, Pages 313-322
20.Arun Mambazhasseri Divakaran, Manickam Minakshi, Parisa Arabzadeh Bahri, Shashi Paul, Pooja Kumari, Anoop Mambazhasseri Divakaran, Krishna Nama Manjunatha, Rational design on materials for developing next generation lithium-ion secondary battery, Progress in Solid State Chemistry, Volume 62, 2021, 100298, ISSN 0079-6786
21.Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E., & Novák, P. (2005). High rate capability of graphite negative electrodes for lithium-ion batteries. Journal of the Electrochemical Society, 152(2), A474.
22.Yuan, Xianxia, Hansan Liu, and Jiujun Zhang, eds. Lithium-ion batteries: advanced materials and technologies. CRC press, 2011.
23.Qi, W., Shapter, J. G., Wu, Q., Yin, T., Gao, G., & Cui, D. (2017). Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 5(37), 19521-19540.
24.Berrueta, A., Urtasun, A., Ursúa, A., & Sanchis, P. (2018). A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model. Energy, 144, 286-300.
25.Liu, H., Wei, Z., He, W., & Zhao, J. (2017). Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy conversion and management, 150, 304-330.
26.Zhang, X. (2011). Thermal analysis of a cylindrical lithium-ion battery. Electrochimica Acta, 56(3), 1246-1255.
27.Wu, Q., Zhang, B., & Lu, Y. (2022). Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries. Journal of Energy Chemistry.
28.Chen, H., Qiu, X., Zhu, W., & Hagenmuller, P. (2002). Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery. Electrochemistry communications, 4(6), 488-491.
29.高濂,孫靜,劉陽橋(民94)。奈米粉體的分散及表面改性。台北市:五南圖書。
30.成會明(民93)。奈米碳管。台北市:五南圖書。P550~P567
31.Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3), 61-102.
32.Ibrahim, K. S. (2013). Carbon nanotubes? properties and applications: A review. Carbon letters, 14(3), 131-144.
33.Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3), 61-102.
34.Arora, N., & Sharma, N. N. (2014). Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and related materials, 50, 135-150.
35.Kim, H. H., & Kim, H. J. (2006). The preparation of carbon nanotubes by dc arc discharge using a carbon cathode coated with catalyst. Materials Science and Engineering: B, 130(1-3), 73-80.
36.Liang, Feng, et al. "Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure." Diamond and Related Materials 30 (2012): 70-76.
37.Lijima, S., Ichihashi, T., & Ando, Y. (1992). Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature, 356(6372), 776-778.
38.Kharlamova, M. V. (2017). Investigation of growth dynamics of carbon nanotubes. Beilstein journal of nanotechnology, 8(1), 826-856.
39.Gakis, G. P., Termine, S., Trompeta, A. F. A., Aviziotis, I. G., & Charitidis, C. A. (2022). Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. Chemical Engineering Journal, 445, 136807.
40.Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48(8), 2127-2150.
41.Tiwari, S. K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10-29.
42.郭信良、劉偉仁(2009年10月)。工業材料雜誌274期-石墨烯的發展與應用(上)。新竹縣:工研院材化所。
43.Zhang, X., Hou, L., Ciesielski, A., & Samorì, P. (2016). 2D materials beyond graphene for high‐performance energy storage applications. Advanced Energy Materials, 6(23), 1600671.
44.Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 3(22), 11700-11715.
45.Liu, M., Zhang, X., Wu, W., Liu, T., Liu, Y., Guo, B., & Zhang, R. (2019). One-step chemical exfoliation of graphite to∼ 100% few-layer graphene with high quality and large size at ambient temperature. Chemical Engineering Journal, 355, 181-185.
46.Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. (2006). Graphene-based composite materials. nature, 442(7100), 282-286.
47.Zhang, Y. I., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of chemical research, 46(10), 2329-2339.
48.Zhang, X., Wang, L., Xin, J., Yakobson, B. I., & Ding, F. (2014). Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. Journal of the American Chemical Society, 136(8), 3040-3047.
49.Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental Science, 4(4), 1113-1132.
50.Wang, D. W., Li, F., Yin, L. C., Lu, X., Chen, Z. G., Gentle, I. R., ... & Cheng, H. M. (2012). Nitrogen‐doped carbon monolith for alkaline supercapacitors and understanding nitrogen‐induced redox transitions. Chemistry–A European Journal, 18(17), 5345-5351.
51.Czerw, R., Terrones, M., Charlier, J. C., Blase, X., Foley, B., Kamalakaran, R., ... & Carroll, D. L. (2001). Identification of electron donor states in N-doped carbon nanotubes. Nano letters, 1(9), 457-460.
52.Wu, Z. S., Ren, W., Xu, L., Li, F., & Cheng, H. M. (2011). Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS nano, 5(7), 5463-5471.
53.Li, X., Geng, D., Zhang, Y., Meng, X., Li, R., & Sun, X. (2011). Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 13(8), 822-825.
54.Meyyappan, M., Delzeit, L., Cassell, A., & Hash, D. (2003). Carbon nanotube growth by PECVD: a review. Plasma sources science and technology, 12(2), 205.
55.Yi, K., Liu, D., Chen, X., Yang, J., Wei, D., Liu, Y., & Wei, D. (2021). Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Accounts of Chemical Research, 54(4), 1011-1022.
56.Martinu, L., Zabeida, O., & Klemberg-Sapieha, J. E. (2010). Plasma-enhanced chemical vapor deposition of functional coatings. Handbook of deposition technologies for films and coatings, 392-465.
57.J.-M. Tarascon , M. Armand , Issues and challenges facing rechargeable lithium batteries , Materials for Sustainable Energy, pp. 171-179 (2010)
58.Peichao Lian, Xuefeng Zhu, Hongfa Xiang, Zhong Li, Weishen Yang, Haihui Wang, Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries, Electrochimica Acta, Volume 56, Issue 2, 2010, Pages 834-840
59.Akkisetty Bhaskar, Melepurath Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries, Journal of Power Sources, Volume 216, 2012, Pages 169-178
60.Xia He, Yi Hu, Zhen Shen, Renzhong Chen, Keshi Wu, Zhongling Cheng, Xiang Wu Zhang, Peng Pan, Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries, Journal of Alloys and Compounds, Volume 729, 2017, Pages 313-322
61.J. Ye, J. Zhang, F. Wang, Q. Su, G. Du, One-pot synthesis of Fe2O3/graphene and its lithium-storage performance, Electrochim. Acta, 113 (2013), pp. 212-217
62.Xiannian Chi, Ling Chang, Dong Xie, Jun Zhang, Gaohui Du, Hydrothermal preparation of Co3O4/graphene composite as anode material for lithium-ion batteries, Materials Letters, Volume 106, 2013, Pages 178-181
63.Da Chen, Ran Yi, Shuru Chen, Terrence Xu, Mikhail L. Gordin, Dongping Lv, Donghai Wang, Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries, Materials Science and Engineering: B, Volume 185, 2014, Pages 7-12,
64.Qian Yang, Qiang Liang, Jun Liu, Shuquan Liang, Shasha Tang, Peijie Lu, Yakun Lu, Ultrafine MoO2 nanoparticles grown on graphene sheets as anode materials for lithium-ion batteries, Materials Letters, Volume 127, 2014, Pages 32-35,
65.Mingyan Li, Bitao Dong, Guoxin Gao, Shujiang Ding, Synthesis of nickel oxide/reduced graphene oxide composite with nanosheet-on-sheet nanostructure for lithium-ion batteries, Materials Letters, Volume 155, 2015, Pages 30-33,
66.Haiping Jia, Richard Kloepsch , Xin He, Juan Pablo Badillo, Martin Winter, Tobias Placke, One-step synthesis of novel mesoporous threedimensional GeO2 and its lithium storage properties, J. Mater. Chem. A, 2014, 2, 17545
67.Xiong, Qin-qin and Tu, Jiang-ping and Xia, Xin-hui and Zhao, Xu-yang and Gu, Chang-dong and Wang, Xiu-li, A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries, Nanoscale, 2013, 5(17), 7906-7912
68.Hou, Q., Man, Q., Liu, P., Jin, R., Cui, Y., Li, G., & Gao, S. (2019). Encapsulation of Fe2O3/NiO and Fe2O3/Co3O4 nanosheets into conductive polypyrrole for superior lithium ion storage. Electrochimica Acta, 296, 438-449.
69.Chen, Y., Cai, R., Yang, Y., Liu, C., Yuan, A., Yang, H., & Shen, X. (2017). Cyanometallic frameworks derived hierarchical porous Fe2O3/NiO microflowers with excellent lithium-storage property. Journal of Alloys and Compounds, 698, 469-475.
70.Byrappa, K., & Adschiri, T. (2007). Hydrothermal technology for nanotechnology. Progress in crystal growth and characterization of materials, 53(2), 117-166.
71.Ward, D. A., & Ko, E. I. (1995). Preparing catalytic materials by the sol-gel method. Industrial & engineering chemistry research, 34(2), 421-433..
72.Smentkowski, V. S. (2000). Trends in sputtering. Progress in Surface Science, 64(1-2), 1-58.
73.Gomes, A., Fernández, B., Pereira, I., & Pereiro, R. (2011). Electrodeposition of metal matrix nanocomposites: improvement of the chemical characterization techniques. INTECH Open Access Publisher.
74.Yuan, Y. F., Xia, X. H., Wu, J. B., Chen, Y. B., Yang, J. L., & Guo, S. Y. (2011). Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochimica Acta, 56(3), 1208-1212.
75.Zhao, D. D., Xu, M. W., Zhou, W. J., Zhang, J., & Li, H. L. (2008). Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochimica Acta, 53(6), 2699-2705.
76.Yousefi, T., Golikand, A. N., & Mashhadizadeh, M. H. (2013). Synthesis of iron oxide nanoparticles at low bath temperature: Characterization and energy storage studies. Materials science in semiconductor processing, 16(6), 1837-1841.
77.Yousefi, T., Davarkhah, R., Golikand, A. N., Mashhadizadeh, M. H., & Abhari, A. (2013). Facile cathodic electrosynthesis and characterization of iron oxide nano-particles. Progress in Natural Science: Materials International, 23(1), 51-54.
78.Thomsen, C., & Reich, S. (2000). Double resonant Raman scattering in graphite. Physical review letters, 85(24), 5214.
79.Kaniyoor, A., Jafri, R. I., Arockiadoss, T., & Ramaprabhu, S. (2009). Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 1(3), 382-386.
80.Dresselhaus, M. S., Dresselhaus, G., & Hofmann, M. (2008). Raman spectroscopy as a probe of graphene and carbon nanotubes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1863), 231-236.
81.Yang, M. M., Xu, X. J., Li, S. P., Liu, W., Liu, J. L., Wang, X. B., ... & Liang, B. L. (2022). Determining layer number of micro-mechanical exfoliated and CVD grown ultrathin graphenes by the methods of Raman intensity ratio. Optik, 258, 168902.
82.汪建民主編,材料分析,中國材料科學學會,新竹市,民國 87
83.Sjöström, H., Stafström, S., Boman, M., & Sundgren, J. E. (1995). Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Physical Review Letters, 75(7), 1336.
84.Zhao, Y., Zhai, X., Yan, D., Ding, C., Wu, N., Su, D., ... & Jin, H. (2017). Rational construction the composite of graphene and hierarchical structure assembled by Fe2O3 nanosheets for lithium storage. Electrochimica Acta, 243, 18-25.
85.Kuang, P., Zhang, L., Cheng, B., & Yu, J. (2017). Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Applied Catalysis B: Environmental, 218, 570-580.
86.Liu, T., Jiang, C., Cheng, B., You, W., & Yu, J. (2017). Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. Journal of Power Sources, 359, 371-378.
87.Ambade, R. B., Lee, H., Lee, K. H., Lee, H., Veerasubramani, G. K., Kim, Y. B., & Han, T. H. (2022). Ultrafast flashlight sintered mesoporous NiO nanosheets for stable asymmetric supercapacitors. Chemical Engineering Journal, 436, 135041.
88.Huang, W., Ding, S., Chen, Y., Hao, W., Lai, X., Peng, J., ... & Li, X. (2017). 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Scientific reports, 7(1), 5220.
89.Preda, I., Mossanek, R. J. O., Abbate, M., Alvarez, L., Méndez, J., Gutiérrez, A., & Soriano, L. (2012). Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG. Surface science, 606(17-18), 1426-1430.
90.Hao, S., Wang, H., Yang, R., Liu, D., Liu, X., Zhang, Q., & Chen, X. (2021). Corn-like mesoporous SnO2/α-Fe2O3 heterostructure for superior TEA sensing performance. Applied Physics A, 127, 1-11.
91.Wang, J. C., Ren, J., Yao, H. C., Zhang, L., Wang, J. S., Zang, S. Q., ... & Li, Z. J. (2016). Synergistic photocatalysis of Cr (VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. Journal of Hazardous Materials, 311, 11-19.
92.Li, Y. F., Zhou, Z., & Wang, L. B. (2008). CNx nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials. The Journal of chemical physics, 129(10).
93.Fan, Z., Liang, J., Yu, W., Ding, S., Cheng, S., Yang, G., ... & Kumar, R. V. (2015). Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy, 16, 152-162.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top