跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊家慈
研究生(外文):JHUANG, JIA-CIH
論文名稱:以四氟甲烷、六氟乙烷、八氟環丁烷進行低壓氟碳電 漿聚合反應之探討
論文名稱(外文):The study of Low Pressure Fluorocarbon Plasma Polymerization with Tetrafluoromethane, Hexafluoroethane and Octafluorocyclobutane
指導教授:黃駿黃駿引用關係
指導教授(外文):HUANG,CHUN
口試委員:魏大欽郭俞麟洪逸明
口試委員(外文):WEI, TA-CHINKUO, YU-LINHUNG, I-MING
口試日期:2023-07-10
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:148
中文關鍵詞:四氟甲烷六氟乙烷八氟環丁烷低壓電漿脈衝式電漿
外文關鍵詞:TetrafluoromethaneHexafluoroethaneOctafluorocyclobutanelow pressure plasmapulsed plasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用三種氟碳氣體,分別為四氟甲烷、六氟乙烷、八氟環丁烷,以射頻低壓電容耦合鐘罩式電漿探討氟碳電漿聚合沉積蝕刻反應,主要以連續式及脈衝式電漿來做比較,並改變操作參數:操作壓力、電漿功率及能量循環,研究由不同操作條件下製備出的氟碳薄膜表面物理性質及化學性質。首先以輝光放電搭配光放射光譜儀分析氟碳電漿中輝光放電物種及輝光強度,再使用光學膜厚儀量測氟碳薄膜厚度,並利用水滴接觸角量測薄膜表面親疏水性,計算其表面自由能,SEM 和 AFM 觀察薄膜表面形貌,XPS 測量薄膜表面特性。實驗後可發現,矽晶圓經由氟碳電漿沉積後會生成低表面能且疏水性薄膜,隨著電漿功率、能量循環增加,六氟乙烷和八氟環丁 烷薄膜厚度及表面粗糙度也會隨著電漿功率增加而增加,反之,四 氟甲烷會減少,推測原因為氟碳電漿在聚合沉積時,會大量解離 CF、CF2官能基並沉積在矽晶圓上,而四氟甲烷會因為 F 原子多於 C 原子,較能解離出 F,而 F 會蝕刻矽晶圓表面,導致薄膜表面厚度下降。
In the experiment, three kinds of fluorocarbon gases were used, which were tetrafluoromethane, hexafluoroethane, and octafluorocyclobutane, respectively. The fluorocarbon plasma of polymerization deposition and etching reaction with RF capacitively coupled bell jar reactor. The experiment was mainly compared of continuous and pulsed plasma modes and the operating parameters were changed: system pressure, plasma power and duty cycle. The physical and chemical properties of the fluorocarbon film surfaces prepared under different operating conditions were studied. Firstly, the species of the glow discharge in fluorocarbon plasma and the intensity of the emitted light were analyzed using an optical emission spectrometer. Secondly, use optical film thickness meter to measure the thickness of fluorocarbon films, and use water droplet contact angle to measure the hydrophilicity and hydrophobicity of the film surface, and calculate its surface freedom. Thirdly, SEM and AFM to observe the surface morphology of the film, XPS to measure the surface properties of the film. After the experiment, the silicon wafer was deposited by fluorocarbon plasma, we can find a low surface energy and hydrophobic film. When the plasma power and duty cycle increased, the thickness and surface roughness of the C2F6 and C4F8 plasma polymerized films will increase, on the contrary, CF4 would reduce. The possible reason for its hydrophobic because fluorocarbon plasma will dissociate CF and CF2 functional groups and deposit them on the silicon wafer during plasma III polymerization.CF4 can dissociate F because there are more F atoms than C atoms, and F will etch the surface of the silicon wafer, resulting in a decrease in the thickness of the fluorocarbon plasma polymerized film surface.
摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 IX
圖目錄 X
壹、緒論 1
1-1前言 1
1-2研究動機與目的 3
貳、基礎理論與文獻回顧 5
2-1電漿起源與定義 5
2-2電漿原理 6
2-3電漿分類 9
2-4電漿聚合反應 11
2-5脈衝式電漿 14
2-6文獻回顧 16
參、實驗方法與分析 21
3-1實驗目的 21
3-2實驗裝置 23
3-3實驗步驟 28
3-3-1實驗前處理 28
3-3-2實驗製程 28
3-4實驗分析及儀器原理 30
3-4-1光放射光譜儀(OES) 31
3-4-2薄膜厚度量測儀 33
3-4-3水滴接觸角量測儀 35
3-4-4表面自由能計算 37
3-4-5傅立葉轉換紅外線光譜儀 38
3-4-6掃描式電子顯微鏡(SEM) 40
3-4-7原子力顯微鏡(AFM) 42
3-4-8 X射線光電子能譜儀(XPS) 43
3-4-9 四點探針電阻量測儀 45
3-4-10 檢測釩離子滲透率簡易裝置 47
3-4-11 紫外光-可見光光譜儀 48
肆、結果與討論 49
4-1 輝光放電圖 50
4-1-1連續式電漿變換壓力及功率的輝光放電圖 50
4-1-2脈衝式電漿變換能量循環及壓力的輝光放電圖 53
4-2 光放射光譜儀全譜圖 57
4-2-1連續式電漿變換壓力的光放射光譜儀全譜圖 57
4-2-2連續式電漿變換功率的光放射光譜儀全譜圖 60
4-2-3脈衝式電漿變換能量循環的光放射光譜儀全譜圖 63
4-3 薄膜厚度 66
4-3-1連續式電漿變換壓力的薄膜厚度圖 66
4-3-2連續式電漿變換功率的薄膜厚度圖 69
4-3-3脈衝式電漿變換能量循環的薄膜厚度圖 72
4-4 水滴接觸角與表面自由能 75
4-4-1連續式電漿變換壓力的水滴接觸角和表面自由能 75
4-4-2連續式電漿變換功率的水滴接觸角和表面自由能 77
4-4-3脈衝式電漿變換能量循環的水滴接觸角和表面自由能 79
4-5 Wenzel &Cassie-Baxter equation分析 81
4-6傅立葉轉換紅外線光譜分析 90
4-6-1連續式電漿變換壓力的ATR-FTIR 90
4-6-2脈衝式電漿變換能量循環的ATR-FTIR 93
4-7表面形貌分析 95
4-7-1脈衝式電漿變換能量循環的表面形貌分析-SEM 95
4-7-2脈衝式電漿變換能量循環的表面形貌分析-AFM 99
4-8 X光電子能譜儀 106
4-8-1脈衝式電漿變換能量循環下XPS表面化學官能基 106
4-9疏水應用性 116
伍、結論 119
參考文獻 121
附錄 127
附錄A利用單體八氟環丁烷Nafion 117為基材進行電漿處理 127
A-1改變操作壓力、電漿功率及能量循環之ATR-FTIR 127
A-2改變操作壓力、電漿功率及能量循環之SEM,AFM 130
A-3使用不同參數下之Uptake、質子傳導率 133
A-4使用檢測釩離子滲透率簡易裝置並計算釩離子滲透率 135
B-1改變電漿功率及能量循環之Wenzel &Cassie-Baxter 理論及分析 140

1. 楊子明 (電機工程), 鍾昌貴, 沈志彥, 李美儀, 吳鴻佑, 詹家瑋(2014年),半導體製程設備技術,五南圖書出版股份有限公司,第136頁。
2. 羅文志,戴貞德(2013年7月1日),「高電流離子植入機之參數最佳化選擇-以 U 公司為例」,商業現代化學刊,第七卷,第二期,第183-198頁。
3. 汪衛華,(2013年10月),「非晶態物質的本質和特性」,物理學進展,第三十三卷,第五期,第216-225頁。
4. Limb, S. J., Edell, D. J., Gleason, E. F., Gleason, K. K. (1998). “Pulsed plasma‐enhanced chemical vapor deposition from hexafluoropropylene oxide.’’, Journal of applied polymer science, vol 67, no.8, pp.1489-1502.
5. Labelle, C. B., Opila, R., & Kornblit, A. (2005). “Plasma deposition of fluorocarbon thin films from c-C4F8 using pulsed and continuous rf excitation.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films, vol 23, no.1, pp.190-196.
6. 劉志宏(2005),應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究,私立中原大學博士論文,桃園市,取自https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22094CYCU5063001%22.&searchmode=basic
7. Thomson, J. J. (1899), “ LVIII. On the masses of the ions in gases at low pressures.” The London, Edinburgh, and Dublin philosophical magazine and journal of science, vol 48, no.295, pp. 547-567.
8. Subramanian Senthilkannan Muthu .(2018), Sustainable Innovations in Textile Chemical Processes, Springer Nature Singapore, pp.45-48.
9. Langmuir, I. (1928,Aug.), “ Oscillations in ionized gases.”, Proceedings of the National Academy of Sciences, vol.14, no.8, pp. 627-637.
10. Price, P. (1991), “Standard definitions of terms relating to mass spectrometry.”, Journal of the American Society for Mass Spectrometry, vol. 2, no. 4, pp. 336-348.
11. Howling, A. A., Sansonnens, L., Dorier, J. L., Hollenstein, C. (1994), “Time‐resolved measurements of highly polymerized negative ions in radio frequency silane plasma deposition experiments.”, Journal of applied physics, vol. 75, no. 3, pp. 1340-1353.
12. 楊士賢(2005),以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究,私立中原大學碩士論文,桃園市,取自https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22093CYCU5063026%22.&searchmode=basic
13. 潘冠廷(2006),多功能微波電漿處理系統之電漿診斷及光阻去除的研究,國立成功大學碩士論文,台南市,取自https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22094NCKU5159079%22.&searchmode=basic
14. Mas-Torrent, M., Crivillers, N., Rovira, C., Veciana, J. (2012). “Attaching persistent organic free radicals to surfaces: how and why.”, Chemical Reviews, vol. 112, no. 4, pp. 2506-2527.
15. 張家豪,魏鴻文,翁政輝,柳克強,李安平,寇崇善,吳敏文,曾錦清,蔡文發,鄭國川,(2006年4月),「電漿源原理與應用之介紹」,物理雙月刊,第二十八卷,第二期,第440-451頁。
16. Obraztsov, A. N., Zolotukhin, A. A., Ustinov, A. O., Volkov, A. P., Svirko, Y., Jefimovs, K. (2003). “DC discharge plasma studies for nanostructured carbon CVD.”, Diamond and Related Materials, vol. 12, no. 3-7, pp. 917-920.
17. Metze, A., Ernie, D. W., Oskam, H. J. (1986). “Application of the physics of plasma sheaths to the modeling of rf plasma reactors.”, Journal of applied physics, vol. 60, no.9, pp. 3081-3087.
18. Chau, T. T., Kao, K. C., Blank, G., & Madrid, F. (1996). “Microwave plasmas for low-temperature dry sterilization.”, Biomaterials, vol. 17, no. 13, pp. 1273-1277.
19. Yasuda, H. K. (1985). “Modification of polymer surfaces by plasma treatment and plasma polymerization.”, ACS Symposium Series, vol. 287, no. 7, pp.88-102.
20. 張修誠,周宛瑱,何主亮,陳俊名(2009年3月20日),「電漿聚合矽-氧-碳化合物於金屬表面之保護研究」,真空科技,第22卷,第1期,第30-35頁。
21. Hynes, A. M., Shenton, M. J., Badyal, J. P. S. (1996). “Pulsed plasma polymerization of perfluorocyclohexane.”, Macromolecules, vol. 29, no. 12, pp. 4220-4225.
22. Dehnavi, V., Luan, B. L., Shoesmith, D. W., Liu, X. Y., Rohani, S. (2013). “Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior.”, Surface and Coatings Technology, vol. 226, pp. 100-107.
23. Miyata, K. M. K., Hori, M. H. M., & Goto, T. G. T. (1997). “Kinetics of Radicals in CF4 and C4F8 Electron Cyclotron Resonance Plasmas.”, Japanese journal of applied physics, vol. 36, no. 8R, pp. 5340.
24. Suzuki, C., Sasaki, K., Kadota, K. (1998). “Surface productions of CF and CF2 radicals in high-density fluorocarbon plasmas.”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 16, no. 4, p. 2222-2226.
25. Yang, S. H., Park, J. W. (2001). “Effect of Post-Plasma Treatment Time on the Properties of Low Dielectric Fluorinated Amorphous Carbon Films.”, Japanese Journal of Applied Physics, vol. 40, no. 2R, p. 694.
26. Ivanov, V. V., Klopovskii, K. S., Lopaev, D. V., Proshina, O. V., Rakhimov, A. T., Rakhimova, T. V., Rulev, G. B. (2002). “Kinetics of the reactions involving CF2 and CF in a pure tetrafluoromethane plasma: I. Production of CF2 and CF via electron-impact dissociation.”, Plasma Physics Reports, vol. 28, no. 3, p. 229-242.
27. Eon, D., Raballand, V., Cartry, G., Peignon-Fernandez, M. C., Cardinaud, C. (2004). “Etching of low-k materials in high density fluorocarbon plasma.”, The European Physical Journal-Applied Physics, vol. 28, no. 3, p. 331-337.
28. Liu, D., Li, W., Feng, Z., Tan, X., Chen, B., Niu, J., & Liu, Y. (2009). “Plasma enhanced CVD of fluorocarbon films by low-pressure dielectric barrier discharge.”, Surface and Coatings Technology, vol. 203, no. 9, p. 1231-1236.
29. Hongwei, H., Chao, Y., Yijun, X., Yuan, Y., Guofeng, S., Zhaoyuan, N. (2010). “Effect of Low-frequency Power on F, CF2 Relative Density and F/CF2 Ratio in Fluorocarbon Dual-Frequency Plasmas.”, Plasma Science and Technology, vol. 12, no. 5, p. 566.
30. Ellinas, K., Tserepi, A., Gogolides, E. (2011). “From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing.”, Langmuir, vol. 27, no. 7, p. 3960-3969.
31. Gao, S. H., Gao, L. H., Zhou, K. S. (2011). “Super-hydrophobicity and oleophobicity of silicone rubber modified by CF4 radio frequency plasma.”, Applied surface science, vol. 257, no. 11, p. 4945-4950.
32. Kim, J. H., Cho, S. W., Park, C. J., Chae, H., Kim, C. K. (2017). “Angular dependences of SiO2 etch rates at different bias voltages in CF4, C2F6, and C4F8 plasmas.”, Thin Solid Films, vol. 637, p. 43-48.
33. Murin, D. B., Pivovarenok, S. A., Kozin, A. S. (2022). “Plasma-Chemical and Reactive-Ion Etching of Silicon in Tetrafluoromethane with Argon.”, Russian Microelectronics, vol. 51, no. 4, p. 243-246.
34. Mountsier, T. W., Samuels, J. A. (1998). “Precursor selection for plasma deposited fluorinated amorphous carbon films.”, Thin Solid Films, vol. 332, no. (1-2), p. 362-368.
35. Labelle, C. B., Gleason, K. K. (1999). “Pulsed plasma-enhanced chemical vapor deposition from CH2F2, C2H2F4, and CHClF2.”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, no. 2, p. 445-452.
36. Endo, K., Shinoda, K., & Tatsumi, T. (1999). “Plasma deposition of low-dielectric-constant fluorinated amorphous carbon.”, Journal of applied physics, vol. 86, no. 5, p. 2739-2745.
37. Elkin, B., Mayer, J., Schindler, B., Vohrer, U. (1999). “Wettability, chemical and morphological data of hydrophobic layers by plasma polymerization on smooth substrates.”, Surface and Coatings Technology, vol. 116, p. 836-840.
38. Martin, I. T., Malkov, G. S., Butoi, C. I., Fisher, E. R. (2004). “Comparison of pulsed and downstream deposition of fluorocarbon materials from C3F8 and
c-C4 F8 plasmas.”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 2, p. 227-235.
39. Mezerette, D., Kuroda, M., Sugai, H. (2005). “Production and control of high pressure surface-wave plasmas for water-repellant fluorocarbon film deposition.”, Thin solid films, vol. 475, no. 1-2, p. 178-182.
40. Gao, S. H., Gao, L. H., Zhou, K. S. (2011). “Super-hydrophobicity and oleophobicity of silicone rubber modified by CF4 radio frequency plasma.”, Applied surface science, vol. 257, no. 11, p. 4945-4950.
41. Feng, S., Wang, S., Liu, C., Zheng, Y., Hou, Y. (2015). “Controlled droplet transport on a gradient adhesion surface.”, Chemical Communications, vol. 51, no. 27, p. 6010-6013.
42. Dimitrakellis, P., Travlos, A., Psycharis, V. P., Gogolides, E. (2017). “Superhydrophobic paper by facile and fast atmospheric pressure plasma etching.”, Plasma Processes and Polymers, vol. 14, no. 3, p. 1600069.
43. Tursi, A., De Vietro, N., Beneduci, A., Milella, A., Chidichimo, F., Fracassi, F.,Chidichimo, G. (2019). “Low pressure plasma functionalized cellulose fiber for the remediation of petroleum hydrocarbons polluted water.”, Journal of hazardous materials, vol. 373, p. 773-782.
44. Kim, J. H., & Kim, C. K. (2020). “Si3N4 etch rates at various ion-incidence angles in high-density CF4, CHF3, and C2F6 plasmas.”, Korean Journal of Chemical Engineering, vol. 37, p. 374-379.
45. Demura, F., Nakano, Y., Tanaka, Y., Ishijima, T., Kikuchi, R., Kumada, A., Inada, Y. (2021). “Experimental Study on Re‐ignition Process in CO2/C2F6 Gas Mixture Flow after Application of Quasi‐Transient Recovery Voltage.”, IEEJ Transactions on Electrical and Electronic Engineering, vol. 16, no. 12, p. 1672-1678.
46. Chibowski, E. (2003). “Surface free energy of a solid from contact angle hysteresis.”, Advances in colloid and interface science, vol. 103, no. 2, p. 149-172.
47. Quéré, D. (2002). “Rough ideas on wetting.”, Physica A: Statistical Mechanics and its Applications, vol. 313, no. 1-2, p. 32-46.
48. 劉宇軒(2018),以射頻電容耦合式電漿進行不同氟碳單體聚合之比較,私立元智大學碩士論文,桃園市,取自https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=VfGkdb/record?r1=1&h1=1
49. 楊順文(2002),電漿聚合碳氮層-TPX複合膜應用於氧氮分離之研究,私立中原大學碩士論文,桃園市,取自https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22090CYCU5063015%22.&searchmode=basic
50. Rie, K. T., Menthe, E., Wöhle, J. (1998). “Optimization and control of a plasma carburizing process by means of optical emission spectroscopy.”, Surface and Coatings technology, vol. 98, no. 1-3, p. 1192-1198.
51. Timmermans, E. A. H., Jonkers, J. I. A. J., Thomas, I. A. J., Rodero, A., Quintero, M. C., Sola, A., ... Van Der Mullen, J. A. M. (1998). “The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1. Plasmas at atmospheric pressure.”, Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 53, no. 11, p. 1553-1566.
52. Yue, H. H., Qin, S. J., Wiseman, J., Toprac, A. (2001). “Plasma etching endpoint detection using multiple wavelengths for small open-area wafers.”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, no. 1, p. 66-75.
53. Rie, K. T., Menthe, E., Wöhle, J. (1998). “Optimization and control of a plasma carburizing process by means of optical emission spectroscopy.”, Surface and Coatings technology, vol. 98, no. 1-3, p. 1192-1198.
54. Kim, B., Kwon, K. H., Kwon, S. K., Park, J. M., Yoo, S. W., Park, K. S., Kim, B. W. (2002). “Modeling oxide etching in a magnetically enhanced reactive ion plasma using neural networks.”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 20, no. 5, p. 2113-2119.
55. Biloiu, C., Biloiu, I. A., Sakai, Y., Sugawara, H., Ohta, A. (2004). “Amorphous fluorocarbon polymer (a-C: F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor. II. Dielectric and insulating properties.”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 4, p. 1158-1165.
56. Vinogradov, I. P., Dinkelmann, A., Lunk, A. (2003). “Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD).”, Surface and Coatings Technology, vol. 174, pp. 509-514.
57. Yang, G. H., Oh, S. W., Kang, E. T., Neoh, K. G. (2002). “Plasma polymerization and deposition of linear, cyclic and aromatic fluorocarbons on (100)-oriented single crystal silicon substrates.”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, no. 6, p. 1955-1963.

電子全文 電子全文(網際網路公開日期:20280717)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊