|
1. De Boutray, H., Jaffali, H., Holweck, F., Giorgetti, A. & Masson., P.-A. Mermin polynomials for non-locality and entanglement detection in Grover’s algorithm and Quantum Fourier Transform. Quantum Information Processing, Springer Verlag 20, pp.91 (2021). 2. Alsina, D. & Latorre, J. I. Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016). 3. W-J, H. et al. Mermin’s inequalities of multiple qubits with orthogonal measurements on IBM Q 53-qubit system. Quantum Engineering. 2 (2020). 4. Dikme, A. & Reichel, N. Experimentell prövning av Mermin- Peres Magiska Kvadrat på IBMs 5- kvantbitsdator (Dissertation). (2019). 5. https://web.ntnu.edu.tw/~499700326/simple.htm. 6. Bekar, C. & Lipsey, R. Science, Institutions, and the Industrial Revolution. The Journal of European economic history 33, 709–753 (May 2004). 7. De physique, G. B. A. V. C. Quantum Theory at the Crossroads : Reconsidering the 1927 Solvay Conference. 2009. 8. Groote, J., Morel, R., Schmaltz, J. & Watkins, A. Logic Gates, Circuits, Processors, Compilers and Computers English. ISBN: 978-3-030-68552-2 (Springer Nature, Singapore, Aug. 2021). 9. Shor, P. W. Introduction to quantum algorithms in Proceedings of Symposia in Applied Mathematics 58 (2002), 143–160. 10. Gyongyosi, L. & Imre, S. A survey on quantum computing technology. Computer Science Review 31, 51–71 (2019). 11. Schaller, R. R. Moore’s law: past, present and future. IEEE spectrum 34, 52–59 (1997). 12. Brock, D. C. & Moore, G. E. Understanding Moore’s law: four decades of innovation (Chemical Heritage Foundation, 2006). 13. Theis, T. N. & Wong, H.-S. P. The end of moore’s law: A new beginning for information technology. Computing in Science & Engineering 19, 41–50 (2017). 14. De Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021). 15. Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361, 1655–1674 (2003). 16. Bruzs, B. Thermodynamic Derivation of a Black Body Radiation Isotherm. Proceedings of the National Academy of Sciences 12, 233–238 (1926). 17. Roos, C. F. Black body radiation PhD thesis (Rice University, 1924). 18. Benford, F. Laws and corollaries of the black body. JOSA 29, 92–96 (1939). 19. Worthing, A. Radiation laws describing the emission of photons by black bodies. JOSA 29, 97–100 (1939). 20. Nasri, S. My Notes on Quantum Mechanics. Matrix, 64 (1925). 21. Page, L. The Distribution of Energy in the Normal Radiation Spectrum. Physical Review 7, 229 (1916). 22. Commons, W. File:Black body.svg — Wikimedia Commons, the free media repository [Online; accessed 6-January-2023]. 2022. %5Curl % 7Bhttps : / / commons . wikimedia.org/w/index.php?title=File:Black_body.svg&oldid=679200869%7D. 23. Bose, S. N. Planck’s law and the hypothesis of light quanta. Z. Phys 26, 1–5 (1924). 24. Byrne, J. Young’s double beam interference experiment with spinor and vector waves. Nature 275, 188–191 (1978). 25. Lacatosias, S. & Epzcaw (talk) - Ebohr1.svg, C. B.-S. 3. https://commons.wikimedia. org/w/index.php?curid=15229922. 26. Clauser, J. F. Experimental distinction between the quantum and classical fieldtheoretic predictions for the photoelectric effect. Physical Review D 9, 853 (1974). 27. Rabinowitz, M. Examination of wave-particle duality via two-slit interference. Modern Physics Letters B 9, 763–789 (1995). 28. Parker, S. A single-photon double-slit interference experiment. American Journal of Physics 39, 420–424 (1971). 29. Morwick, J. J. What is the electron, really? Journal of Chemical Education 55, 662 (1978). 30. Shpakov, V. & Dabagov, S. Diffraction radiation from an electron beam for one-and two-slit systems. Russian Physics Journal 55, 1338–1344 (2013). 31. Wätzel, J., Murray, A. J. & Berakdar, J. Time-resolved buildup of two-slit-type interference from a single atom. Physical Review A 100, 013407 (2019). 32. Horner, D. A. et al. Classical two-slit interference effects in double photoionization of molecular hydrogen at high energies. Physical review letters 101, 183002 (2008). 33. Christodoulou, M. & Rovelli, C. On the possibility of laboratory evidence for quantum superposition of geometries. Physics Letters B 792, 64–68 (2019). 34. Agarwal, G. S., Puri, R. & Singh, R. Atomic Schrödinger cat states. Physical Review A 56, 2249 (1997). 35. Wineland, D. J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’ s cat. Reviews of Modern Physics 85, 1103 (2013). 36. Gribbin, J. In search of Schrodinger’s cat: Quantum physics and reality (Bantam, 2011). 37. Van Fraassen, B. C. in Logic and Probability in Quantum Mechanics 283–301 (Springer, 1976). 38. Aerts, D. in Open Questions in Quantum Physics 33–50 (Springer, 1985). 39. Mückenheim, W. A resolution of the Einstein-Podolsky-Rosen paradox. Lettere al Nuovo Cimento (1971-1985) 35, 300–304 (1982). 40. De Muynck, W. M. The Bell inequalities and their irrelevance to the problem of locality in quantum mechanics. Physics Letters A 114, 65–67 (1986). 41. Stent, G. S. Does God play dice? For nearly a decade Einstein and Bohr struggled over the nature of reality. The sciences 19, 18–23 (1979). 42. Zeeshan, M., Anayat, S., Ghulam hussain, R. & Rehman, N. Processing Power of Quantum Computer. International Journal of Scientific and Engineering Research 7, 1952 to 1958 (Sept. 2016). 43. https://www.ibm.com/topics/quantum-computing#anchor--1630363761. 44. J., H. Quantum Computing : An Applied Approach. Cham: Springer (2019). 45. 林志鴻 et al. 量子電腦應用與世界級競賽實務. 一品 (2021). 46. Turing, A. M. On Computable Numbers, With an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society. Series 2, Volume 42, 230–265 (1965). 47. Sipser, M. ntroduction to the Theory of Computation. PWS Publishing (1997). 48. Barad, K. Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning (duke university Press, 2007). 49. Shadbolt, P., Mathews, J. C., Laing, A. & O’brien, J. L. Testing foundations of quantum mechanics with photons. Nature Physics 10, 278–286 (2014). 50. Kv zhao. 量子電腦:從原理、實作到應用 https://reurl.cc/10Xaam. 51. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (Oct. 2019). 52. Boixo, S. et al. Characterizing Quantum Supremacy in Near-Term Devices. Nature Physics 14, 595–600. https://www.nature.com/articles/s41567-018-0124-x (2018). 53. De Touzalin (European Commission), A. et al. Quantum Manifesto:A New Era of Technology 2016. http://qurope.eu/manifesto. 54. 蒋宝尚,编辑:上方文 Q. 量子计算研究进展:中美两国有 4-5 年的技术差距. 雷锋网. 資料引自 https://news.mydrivers.com/1/680/6 (Mar. 2020). 55. Et al., A. A. Experimental Tests of Realistic Local Theories via Bell’s Theorem. Phys. Rev. Lett. 47 (1981). 56. González, D., de la Pradilla, D. & González, G. Revisiting the Experimental Test of Mermin’s Inequalities at IBMQ. Int. J Theory Phys. 59, 3756–3768 (2020). 57. Mermin, N. D. What’s wrong with these elements of reality? Physics Today 43 (1990). 58. Irizarry-Gelpí, M. https://meirizarrygelpi.github.io/posts/physics/mermin- peresmagic-square-game-2/index.html. 59. https://github.com/JanLahmann/Fun-with-Quantum/blob/master/Mermin%E2% 80%93Peres-Game.ipynb. 60. https://quantum- computing.ibm.com/services/resources?system=ibmq_belem& tab=systems. 61. https://quantum-computing.ibm.com/services/resources?system=ibmq_manila& tab=systems&skip=20. 62. Aggarwal, D., Raj, S., Behera, B. K. & Panigrahi, P. K. Application of quantum scrambling in Rydberg atom on IBM quantum computer. arXiv preprint arXiv:1806.00781 (2018). 63. Dumitrescu, E. F. et al. Cloud Quantum Computing of an Atomic Nucleus. Phys. Rev. Lett. 120, 210501. https://link.aps.org/doi/10.1103/PhysRevLett.120.210501 (21 May 2018). 64. Kumar, S., Singh, R. P., Behera, B. K. & Panigrahi, P. K. Quantum simulation of negative hydrogen ion using variational quantum eigensolver on IBM quantum computer. arXiv preprint arXiv:1903.03454 (2019)
|