跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/13 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林琪芬
研究生(外文):LIN, CHI-FEN
論文名稱:量子電腦中的量子糾纏性應用
論文名稱(外文):The Application of Quantum Entanglement on Real Quantum Computer
指導教授:傅薈如
指導教授(外文):FUH, HUEI-RU
口試委員:傅薈如廖朝光黃琮暐陳志宇
口試委員(外文):FUH, HUEI-RULIAU, CHAU-KUANGHUANG, TSUNG-WEICHEN, CHIH-YU
口試日期:2023-07-12
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:88
中文關鍵詞:量子糾纏真實量子電腦類 GHZ 態Mermin-Peres 魔方遊戲
外文關鍵詞:quantum entanglementreal quantum computerGHZ-like stateMermin-Peres Magic Square game
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
量子電腦的計算加速特性與量子間的糾纏態有關,越多量子比特糾纏,量子計算的加速就越快。因此在量子計算中,量子比特間的糾纏特性穩不穩定就顯得十分重要。真實量子電腦中,會因為許多因素導致量子比特間糾纏狀態不佳,因此,我們就必須藉由一些量子電腦中的運算與測量,來找出哪些量子比特是最適合做計算的。
本研究的第一個計算──Mermin 多項式[1] 對於量子電腦測量的影響,旨在在量子比特間,使用特殊條件類 Greenberger-Horne-Zeilinger 態(GHZlike state;類 GHZ 態)為依據,[2] 並計算 Mermin 多項式,即可以推算量子位元是否具糾纏特性。[3] 第二個計算是 Mermin-Peres 魔方遊戲(MerminPeres Magic Square Game),為一種典型的資訊不對稱遊戲。假設有兩人正在遊玩,除了需滿足 Mermin-Peres 魔方遊戲設下的限制條件外,兩人在遊戲進行過程中全程不能交換訊息。在古典計算中我們可以發現,若要維持 100%勝率,會導致九宮格右下的測量值呈現 1 及 -1。因此,在古典理論中,僅能測出 8/9 的勝率;反之,若是利用量子電腦糾纏的特性預測,將會達到 100%的勝率。計算後得出的結果,每行與每列的機率值大致接近 100%。此結果與量子比特的組合及糾纏狀態是否良好有關。[4]
在本篇中,運用目前兩臺 IBM 5 量子比特的量子電腦── Belem 與Manila 計算並討論 Mermin-Peres 魔方遊戲(Mermin-Peres Magic Square Game)。
The computing acceleration of quantum computer is related to the entanglement state between qubits. The more qubits are entangled the faster the acceleration of quantum computing. Therefore, in quantum computing, it is very important that the entanglement between qubits are stable or not. In a real quantum computer, the entanglement state between qubits will become weak due to many factors. Therefore, we must use some calculations and measurements in quantum computers to find out which qubits are most suitable for calculation.
The first part of discussion is the influence of Mermin polynomial [1] on quantum computer measurement. It bases on the Greenberger-Horne-Zeilinger like state (GHZlike state) between qubits and calculates the Mermin polynomial.[2]. It can be calculated the entanglement properties between qubits[3]. The second part is the Mermin-Peres Magic Square Game, which is a typical information asymmetric game. Assuming that two people are playing the game, the restrictions set by the MerminPeres Magic Square game, the two players cannot exchange messages during the game. In classical calculations, we can calculate the winning rate of the game. In the classical theory, only an 8/9 winning rate can be measured. On the contrary, if the entanglement characteristics of the quantum computer are used to predict the winning rate, it will reach 100%. As a result of the calculation, the probability value of each row and each column is roughly close to 100%. This result is based on the combination of qubits and the states of entanglement are good [4].
At this research, we used the two of IBM 5-qubit quantum computers──Belem and Manila to calculate and discuss the possibility of Mermin-Peres Magic Square Game.

目 錄
書名頁. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文口試委審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
第一 章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 量子現象與實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 黑體輻射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 楊格雙狹縫實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 薛丁格的貓 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 EPR 悖論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 實驗簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
第二 章 量子電腦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 發展歷史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 現有硬體介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
第三 章 實驗理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Pauli X,Y,Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 GHZ-like state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Mermin inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 量子電路設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Mermin-Peres Magic Square . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 量子電路設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 IBM-Belem & IBM-Manila 量子電腦機器線路圖 . . . . . . . . . . . . 28
第四 章 結果討論:Mermin inquality 對於量子電腦測量的影響 . . . . . . . . . 29
4.1 2-5 量子比特在 Qasm Simulator 上的模擬結果 . . . . . . . . . . . . . 29
4.2 真實量子電腦測量結果 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 IBM-Belem 量子電腦的 2-qubit 測量結果 . . . . . . . . . . . . 31
4.2.2 IBM-Manila 量子電腦的 2-qubit 測量結果 . . . . . . . . . . . . 34
4.2.3 IBM-Belem 量子電腦的 3-qubit 測量結果 . . . . . . . . . . . . 37
4.2.4 IBM-Manila 量子電腦的 3-qubit 測量結果 . . . . . . . . . . . . 40
4.2.5 總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
第五 章 結果討論:Mermin-Peres 魔方遊戲. . . . . . . . . . . . . . . . . . . . . . 44
5.1 Qasm Simulator 測量結果 . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 真實量子電腦測量結果 . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1 IBM-Belem 量子電腦測量 Mermin-Peres 魔方遊戲結果 . . . . 45
5.2.2 IBM-Manila 量子電腦測量 Mermin-Peres 魔方遊戲結果 . . . . 46
5.2.3 總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 增加初始條件 Rz 後 Qasm Simulator 測量結果 . . . . . . . . . . . . . 48
5.4 增加初始條件 Rx 後 Qasm Simulator 測量結果 . . . . . . . . . . . . . 57
第六 章 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
附錄一. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1. De Boutray, H., Jaffali, H., Holweck, F., Giorgetti, A. & Masson., P.-A. Mermin
polynomials for non-locality and entanglement detection in Grover’s algorithm and
Quantum Fourier Transform. Quantum Information Processing, Springer Verlag 20,
pp.91 (2021).
2. Alsina, D. & Latorre, J. I. Experimental test of Mermin inequalities on a five-qubit
quantum computer. Phys. Rev. A 94, 012314 (2016).
3. W-J, H. et al. Mermin’s inequalities of multiple qubits with orthogonal measurements
on IBM Q 53-qubit system. Quantum Engineering. 2 (2020).
4. Dikme, A. & Reichel, N. Experimentell prövning av Mermin- Peres Magiska Kvadrat
på IBMs 5- kvantbitsdator (Dissertation). (2019).
5. https://web.ntnu.edu.tw/~499700326/simple.htm.
6. Bekar, C. & Lipsey, R. Science, Institutions, and the Industrial Revolution. The Journal of European economic history 33, 709–753 (May 2004).
7. De physique, G. B. A. V. C. Quantum Theory at the Crossroads : Reconsidering the
1927 Solvay Conference. 2009.
8. Groote, J., Morel, R., Schmaltz, J. & Watkins, A. Logic Gates, Circuits, Processors,
Compilers and Computers English. ISBN: 978-3-030-68552-2 (Springer Nature, Singapore, Aug. 2021).
9. Shor, P. W. Introduction to quantum algorithms in Proceedings of Symposia in Applied Mathematics 58 (2002), 143–160.
10. Gyongyosi, L. & Imre, S. A survey on quantum computing technology. Computer
Science Review 31, 51–71 (2019).
11. Schaller, R. R. Moore’s law: past, present and future. IEEE spectrum 34, 52–59
(1997).
12. Brock, D. C. & Moore, G. E. Understanding Moore’s law: four decades of innovation
(Chemical Heritage Foundation, 2006).
13. Theis, T. N. & Wong, H.-S. P. The end of moore’s law: A new beginning for information technology. Computing in Science & Engineering 19, 41–50 (2017).
14. De Leon, N. P. et al. Materials challenges and opportunities for quantum computing
hardware. Science 372, eabb2823 (2021).
15. Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution.
Philosophical Transactions of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 361, 1655–1674 (2003).
16. Bruzs, B. Thermodynamic Derivation of a Black Body Radiation Isotherm. Proceedings of the National Academy of Sciences 12, 233–238 (1926).
17. Roos, C. F. Black body radiation PhD thesis (Rice University, 1924).
18. Benford, F. Laws and corollaries of the black body. JOSA 29, 92–96 (1939).
19. Worthing, A. Radiation laws describing the emission of photons by black bodies.
JOSA 29, 97–100 (1939).
20. Nasri, S. My Notes on Quantum Mechanics. Matrix, 64 (1925).
21. Page, L. The Distribution of Energy in the Normal Radiation Spectrum. Physical
Review 7, 229 (1916).
22. Commons, W. File:Black body.svg — Wikimedia Commons, the free media repository [Online; accessed 6-January-2023]. 2022. %5Curl % 7Bhttps : / / commons .
wikimedia.org/w/index.php?title=File:Black_body.svg&oldid=679200869%7D.
23. Bose, S. N. Planck’s law and the hypothesis of light quanta. Z. Phys 26, 1–5 (1924).
24. Byrne, J. Young’s double beam interference experiment with spinor and vector
waves. Nature 275, 188–191 (1978).
25. Lacatosias, S. & Epzcaw (talk) - Ebohr1.svg, C. B.-S. 3. https://commons.wikimedia.
org/w/index.php?curid=15229922.
26. Clauser, J. F. Experimental distinction between the quantum and classical fieldtheoretic predictions for the photoelectric effect. Physical Review D 9, 853 (1974).
27. Rabinowitz, M. Examination of wave-particle duality via two-slit interference. Modern Physics Letters B 9, 763–789 (1995).
28. Parker, S. A single-photon double-slit interference experiment. American Journal of
Physics 39, 420–424 (1971).
29. Morwick, J. J. What is the electron, really? Journal of Chemical Education 55, 662
(1978).
30. Shpakov, V. & Dabagov, S. Diffraction radiation from an electron beam for one-and
two-slit systems. Russian Physics Journal 55, 1338–1344 (2013).
31. Wätzel, J., Murray, A. J. & Berakdar, J. Time-resolved buildup of two-slit-type interference from a single atom. Physical Review A 100, 013407 (2019).
32. Horner, D. A. et al. Classical two-slit interference effects in double photoionization
of molecular hydrogen at high energies. Physical review letters 101, 183002 (2008).
33. Christodoulou, M. & Rovelli, C. On the possibility of laboratory evidence for quantum superposition of geometries. Physics Letters B 792, 64–68 (2019).
34. Agarwal, G. S., Puri, R. & Singh, R. Atomic Schrödinger cat states. Physical Review
A 56, 2249 (1997).
35. Wineland, D. J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’
s cat. Reviews of Modern Physics 85, 1103 (2013).
36. Gribbin, J. In search of Schrodinger’s cat: Quantum physics and reality (Bantam,
2011).
37. Van Fraassen, B. C. in Logic and Probability in Quantum Mechanics 283–301
(Springer, 1976).
38. Aerts, D. in Open Questions in Quantum Physics 33–50 (Springer, 1985).
39. Mückenheim, W. A resolution of the Einstein-Podolsky-Rosen paradox. Lettere al
Nuovo Cimento (1971-1985) 35, 300–304 (1982).
40. De Muynck, W. M. The Bell inequalities and their irrelevance to the problem of
locality in quantum mechanics. Physics Letters A 114, 65–67 (1986).
41. Stent, G. S. Does God play dice? For nearly a decade Einstein and Bohr struggled
over the nature of reality. The sciences 19, 18–23 (1979).
42. Zeeshan, M., Anayat, S., Ghulam hussain, R. & Rehman, N. Processing Power of
Quantum Computer. International Journal of Scientific and Engineering Research
7, 1952 to 1958 (Sept. 2016).
43. https://www.ibm.com/topics/quantum-computing#anchor--1630363761.
44. J., H. Quantum Computing : An Applied Approach. Cham: Springer (2019).
45. 林志鴻 et al. 量子電腦應用與世界級競賽實務. 一品 (2021).
46. Turing, A. M. On Computable Numbers, With an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society. Series 2, Volume
42, 230–265 (1965).
47. Sipser, M. ntroduction to the Theory of Computation. PWS Publishing (1997).
48. Barad, K. Meeting the universe halfway: Quantum physics and the entanglement of
matter and meaning (duke university Press, 2007).
49. Shadbolt, P., Mathews, J. C., Laing, A. & O’brien, J. L. Testing foundations of quantum mechanics with photons. Nature Physics 10, 278–286 (2014).
50. Kv zhao. 量子電腦:從原理、實作到應用 https://reurl.cc/10Xaam.
51. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (Oct. 2019).
52. Boixo, S. et al. Characterizing Quantum Supremacy in Near-Term Devices. Nature
Physics 14, 595–600. https://www.nature.com/articles/s41567-018-0124-x (2018).
53. De Touzalin (European Commission), A. et al. Quantum Manifesto:A New Era of
Technology 2016. http://qurope.eu/manifesto.
54. 蒋宝尚,编辑:上方文 Q. 量子计算研究进展:中美两国有 4-5 年的技术差距.
雷锋网. 資料引自 https://news.mydrivers.com/1/680/6 (Mar. 2020).
55. Et al., A. A. Experimental Tests of Realistic Local Theories via Bell’s Theorem. Phys.
Rev. Lett. 47 (1981).
56. González, D., de la Pradilla, D. & González, G. Revisiting the Experimental Test of
Mermin’s Inequalities at IBMQ. Int. J Theory Phys. 59, 3756–3768 (2020).
57. Mermin, N. D. What’s wrong with these elements of reality? Physics Today 43
(1990).
58. Irizarry-Gelpí, M. https://meirizarrygelpi.github.io/posts/physics/mermin- peresmagic-square-game-2/index.html.
59. https://github.com/JanLahmann/Fun-with-Quantum/blob/master/Mermin%E2%
80%93Peres-Game.ipynb.
60. https://quantum- computing.ibm.com/services/resources?system=ibmq_belem&
tab=systems.
61. https://quantum-computing.ibm.com/services/resources?system=ibmq_manila&
tab=systems&skip=20.
62. Aggarwal, D., Raj, S., Behera, B. K. & Panigrahi, P. K. Application of quantum
scrambling in Rydberg atom on IBM quantum computer. arXiv preprint arXiv:1806.00781
(2018).
63. Dumitrescu, E. F. et al. Cloud Quantum Computing of an Atomic Nucleus. Phys.
Rev. Lett. 120, 210501. https://link.aps.org/doi/10.1103/PhysRevLett.120.210501
(21 May 2018).
64. Kumar, S., Singh, R. P., Behera, B. K. & Panigrahi, P. K. Quantum simulation of
negative hydrogen ion using variational quantum eigensolver on IBM quantum computer. arXiv preprint arXiv:1903.03454 (2019)
電子全文 電子全文(網際網路公開日期:20250723)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top