跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡玲緣
研究生(外文):HU, LING-YUAN
論文名稱:FeCoNiX(X=Al, Cr, Cu, Mn)中熵合金系統之電化學腐蝕行為研究
論文名稱(外文):Corrosion behaviors and electrochemical properties of FeCoNiX(X=Al, Cr, Cu, Mn) medium-entropy alloys
指導教授:王朝弘王朝弘引用關係
指導教授(外文):WANG, CHAO-HONG
口試委員:陳志銘衛子健
口試委員(外文):CHEN, CHIH-MINGWEI, TZU-CHIEN
口試日期:2024-01-11
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:337
中文關鍵詞:中熵合金腐蝕電化學
外文關鍵詞:medium entropy alloycorrosionelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究系統性地探討鑄造態FCNX(X=Al, Cr, Cu, Mn)中熵合金系統於3.5wt.% NaCl溶液與0.5M H2SO4溶液中的抗腐蝕能力與電化學腐蝕行為,高熵合金藉由多種元素以等原子比混合,其合金之混合熵值很大,擴散緩慢不易形成有序結構,取而代之容易形成奈米晶結構或是非晶結構,非晶結構在抗腐蝕表現上優於有序結構。然而實際上,所有元素並不是均勻地隨機排列,特定元素會傾向於結合在一起形成偏析,偏析與合金部分組成上的差異,將對抗蝕能力造成影響。
FCNCrx系統為均勻相時,因為Co和Ni元素溶解,形成孔蝕,金屬離子與Cl-、SO42-和OH-反應形成氧化膜,Fe和Co的水合物容易進一步氧化,同時阻礙鈍化膜修復,使更多的腐蝕性陰離子蓄積於蝕孔內。Cr氧化物不易溶解,具穩定鈍化膜功能。FCNCr1.0為晶間腐蝕,主要沿著晶界發生腐蝕,Co2+、Fe2+、Ni2+溶解速率比Cr3+更快,進一步增強伽凡尼微電偶效應,使得晶界附近的金屬溶解反應速率增加。FCNCrx系統適合應用於3.5wt.% NaCl,其總阻抗超過1×104 Ωcm2,FCNCr0.5鈍化層表現最佳,次之為FCNCr1.0,歸因於FCNCr1.0的非勻相合金結構而導致鈍化性下降。
FCNCux系統在3.5wt.% NaCl中,隨著Cu含量減少,整體極化曲線隨而向左上方偏移,Ecorr向陽極方向提升,Rct與Cu偏析程度成反比;在0.5M H2SO4溶液中,鈍化膜因為有Ksp極低之Cu2O和CuS加入,大大增加鈍化膜於低頻的穩定性。FCNCu0.5鈍化層保護性最為優秀,次之為FCNCu1.0,同樣歸因於合金的偏析嚴重,導致鈍化性衰弱。FCNCux高頻至低頻的過程中,相位角能維持在45o以上,顯示其在低頻區具有抵抗質量傳遞的優勢,FCNCux適用於硫酸環境。
FCNAlx和FCNMnx系統在兩種水溶液中呈現相似的腐蝕趨勢。FCNAl0.2遭受嚴重孔蝕,Ni和Al溶解。FCNAl0.5由Fe, Co-rich的FCC相和Al, Ni-rich的BCC相組成,Al氧化物含量的不均勻性,導致氧化膜分散,表現出選擇性腐蝕,Cl-或SO42-沿著FCC相與BCC相邊緣腐蝕,特別是BCC相優先受到侵蝕。由於Al形成多孔性氧化膜,離子擴散效率提高,不利於阻擋氯離子,因此降低合金的耐腐蝕性。惟FCNAl1.0之含Al鈍化膜較能穩定存在硫酸中,孔蝕破壞程度極低,適合用於硫酸環境中。
FCNCMnx系統的晶界腐蝕程度以及孔蝕傾向與Ni, Mn-rich相的偏析成正相關。FCNMn1.0因Mn含量最高,Ni, Mn-rich相體積比最大,受到孔蝕破壞最為嚴重。因為Mn阻止鈍化膜再鈍化,造成蝕孔周邊的鈍化膜難以修復。FCNCux為底部圓滑的菱形凹坑,FCNCrx則是較深的不規則蝕孔。Bode圖的第一時間常數向高頻區位移,顯示低頻區的氧化膜不穩定。綜合電化學分析結果,含Mn氧化物能夠在含Cl-的環境中維持一定的阻抗值,相較之下,硫酸中阻抗值均小於FCN合金,因此FCNMnx在3.5wt.% NaCl環境中更具有應用潛力。

This study systematically investigates the corrosion resistance and electrochemical behavior of as-cast medium-entropy alloys, FCNX (X=Al, Cr, Cu, Mn), in 3.5wt.% NaCl and 0.5M H2SO4 solutions. High-entropy alloys, characterized by a large mixing entropy due to the equal atomic ratio of multiple elements, exhibit slow diffusion, favoring the formation of nanocrystalline or amorphous structures, which demonstrate superior corrosion resistance compared to ordered structures. In fact, alloy structures may exhibit certain elements' tendency to cluster, leading to segregation that impacts corrosion resistance.
When the FCNCrx system is homogeneous, pitting corrosion is formed because Co and Ni elements dissolve, and metal ions react with Cl-, SO42- and OH- to form an oxide film. Metal ions react with Cl-, SO42-, and OH- to form hydrates, and the hydration of Fe and Co hinders the repair of the passivation film, allowing more corrosive ions to accumulate in the pits, causing continuous alloy degradation. Only Cr oxide is resistant to dissolution and forms a stable passivation film. FCNCr1.0 is intergranular corrosion, which mainly occurs along the grain boundaries. The dissolution rate of Co2+, Fe2+, and Ni2+ is faster than that of Cr3+, which further enhances the Galvanic effect and increases the metal dissolution reaction rate near the grain boundaries. In 3.5wt.% NaCl, the total impedance in FCNCrx systems exceeds 1×104 Ωcm2. The FCNCr0.5 passivation layer performs best, followed by FCNCr1.0, due to the heterogeneous alloy structure of FCNCr1.0. Resulting in a decrease in passivation.
The FCNCux system in 3.5wt.% NaCl, as the Cu content decreases, the overall polarization curve shifts to the upper left, Ecorr increases toward the anode, and Rct is inversely proportional to the degree of Cu segregation.. In the 0.5M H2SO4 solution, the passivation film is added with Cu2O and CuS with extremely low Ksp, which greatly increases the stability of the passivation film at low frequencies. FCNCu0.5 has the best passivation layer protection, followed by FCNCu1.0, which is also due to the severe segregation of the alloy, resulting in weakened passivation. FCNCux passivation films maintain a phase angle above 45o throughout the frequency range, indicating advantages in resisting mass transfer in the low-frequency region. FCNCux systems are suitable for sulfuric acid environments.
FCNAlx and FCNMnx systems exhibit similar corrosion trends in two different aqueous solutions. FCNAl0.2 exhibits severe pitting corrosion, resulting in the dissolution of Ni and Al. The uneven content of Al oxide leads to the dispersion of the oxide film, showing selective corrosion, Cl- or SO42- along the The edges of the FCC phase and BCC phase are corroded, especially the BCC phase is corroded preferentially. Since Al forms a porous oxide film, the ion diffusion efficiency is improved, which is not conducive to blocking chloride ions, thus reducing the corrosion resistance of the alloy. However, the Al-containing passivation film of FCNAl1.0 is more stable in sulfuric acid and has extremely low pitting damage, making it suitable for use in sulfuric acid environments.
FCNCMnx systems experience grain boundary and pitting corrosion, with the severity correlated with the degree of Ni, Mn-rich phase segregation. FCNMn1.0, with the highest Mn content, exhibits severe pitting corrosion. The pits exhibit a regular square shape, which is similar to FCNCux due to Mn preventing passivation film repair, allowing the pits to expand. The absence of a second time constant in the Bode plots suggests unstable passivation films at low frequencies, potentially due to the rapid breakdown of Mn oxide films in this region. In chloride-containing environments, Mn oxide maintains a stable impedance, making FCNMnx more promising in 3.5wt.% NaCl compared to 0.5M H2SO4.


摘要
Abstract
目錄
表目錄
圖目錄
第一章 前言
第二章 文獻回顧
2-1 電化學原理與分析方法
2-1-1 混合電位理論(Mixed Potential Theory)
2-1-2 電化學基本名詞
2-1-3 動態電位極化(Potentiodynamic Polarization)
2-1-4 陽極極化(Anodic Polarization) 10
2-1-5 循環極化(Cyclic Potentiodynamic Polarization, CPDP)
2-1-6 交流阻抗頻譜分析(Electrochemical Impedance Spectroscopy, EIS)
2-2 腐蝕
2-2-1 金屬腐蝕
2-2-2 均勻腐蝕
2-2-3 伽凡尼腐蝕
2-2-4 孔蝕
2-2-5 晶間腐蝕
2-3 元素組成對高熵合金腐蝕行為之影響
2-3-1 鐵
2-3-2 鈷
2-3-3 鎳
2-3-4 鉻
2-3-5 鋁
2-3-6 銅
2-3-7 錳
第三章 實驗步驟
3-1 研究架構
3-2 實驗設備與藥品
3-3 中熵合金樣品製備
3-4 電化學實驗樣品製備
3-5 動電位極化(LSV)測試實驗步驟
3-6 循環極化(CV)測試實驗步驟
3-7 交流阻抗頻譜分析(EIS)
3-8 浸泡失重試驗
第四章 結果與討論
4-1 合金組成與表面微結構分析
4-1-1 FCN合金表面微結構分析
4-1-2 FCNAlx(x=0.2, 0.5, 1.0)合金表面微結構分析
4-1-3 FCNCrx(x=0.2, 0.5, 1.0)合金表面微結構分析
4-1-4 FCNCux(x=0.2, 0.5, 1.0)合金表面微結構分析
4-1-5 FCNMnx(x=0.2, 0.5, 1.0)合金表面微結構分析
4-2 FCNX(X=Al, Cr, Cu, Mn)於3.5wt.% NaCl溶液電化學測試
4-2-1 動電位極化掃描
4-2-2 動電位極化掃描後表面微結構與組成分析
4-2-3 循環極化掃描(CV)
4-2-4 交流阻抗頻譜分析(EIS)
4-2-5 十五天浸泡失重分析與表面形貌
4-3 改變中熵合金元素添加比例於3.5wt.% NaCl電化學測試
4-3-1 FCNAlx (x=0, 0.2, 0.5, 1.0)
4-3-2 FCNCrx(x=0, 0.2, 0.5, 1.0)
4-3-3 FCNCux(x=0, 0.2, 0.5, 1.0)
4-3-4 FCNMnx (x=0, 0.2, 0.5, 1.0)
4-4 FCNX(X=Al, Cr, Cu, Mn)於0.5M H2SO4溶液電化學測試
4-4-1 動電位極化掃描
4-4-2 動電位極化掃描後表面微結構與組成分析
4-4-3 循環極化掃描(CV)
4-4-4 交流阻抗頻譜分析(EIS)
4-4-5 十五天浸泡失重分析與表面形貌
4-5 改變中熵合金元素添加比例於0.5M H2SO4電化學測試
4-5-1 FCNAlx (x=0, 0.2, 0.5, 1.0)
4-5-2 FCNCrx(x=0, 0.2, 0.5, 1.0)
4-5-3 FCNCux(x=0, 0.2, 0.5, 1.0)
4-5-4 FCNMnx (x=0, 0.2, 0.5, 1.0)
第五章 結論
參考文獻
附錄
A-1 元素還原半反應與標準還原電位
A-2 金屬水合物還原半反應與標準還原電位
A-3 金屬化合物溶解度積


[1]M. Sheikholeslam, K. Raeissi, and M. Enayati, "Study on corrosion behaviour of nanocrystalline and amorphous Co–P electrodeposits", Transactions of the IMF, Vol. 88, no. 6, pp. 324-329, (2010).
[2]D. D. Macdonald, "The point defect model for the passive state", Journal of the Electrochemical Society, Vol. 139, no. 12, pp. 3434, (1992).
[3]H.-H. Strehblow, "Passivity of metals studied by surface analytical methods, a review", Electrochimica Acta, Vol. 212, pp. 630-648, (2016).
[4]H. Baorong and L. Dongzhu, "Corrosion cost and preventive strategies in China", Bulletin of Chinese Academy of Sciences, Vol. 33, no. 6, pp. 601-609, (2018).
[5]G. H. Koch, M. P. Brongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer,“Corrosion cost and preventive strategies in the United States”, (2002).
[6]S. D. Cramer, B. S. Covino, and C. Moosbrugger,“Corrosion: fundamentals, testing and protection”, ASM international Materials Park, (2003).
[7]J. Nilsson and A. Wilson, "Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF 2507", Materials Science Technology, Vol. 9, no. 7, pp. 545-554, (1993).
[8]Z. Cvijović and G. Radenković, "Microstructure and pitting corrosion resistance of annealed duplex stainless steel", Corrosion Science, Vol. 48, no. 12, pp. 3887-3906, (2006).
[9]A. Rodriguez, J. H. Tylczak, and M. Ziomek-Moroz, "Corrosion behavior of CoCrFeMnNi high-entropy alloys (HEAs) under aqueous acidic conditions", ECS Transactions, Vol. 77, no. 11, pp. 741, (2017).
[10]H. Luo, Z. Li, A. M. Mingers, and D. Raabe, "Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution", Corrosion Science, Vol. 134, pp. 131-139, (2018).
[11]L. Wang et al., "Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS", Corrosion Science, Vol. 167, pp. 108507, (2020).
[12]A.-M. J. Popescu et al., "Electrodeposition, characterization, and corrosion behavior of CoCrFeMnNi high-entropy alloy thin films", Coatings Technology, Vol. 11, no. 11, pp. 1367, (2021).
[13]M. Nartu et al., "Magnetic and mechanical properties of an additively manufactured equiatomic CoFeNi complex concentrated alloy", Scripta Materialia, Vol. 187, pp. 30-36, (2020).
[14]C.-L. Lin et al., "Investigation on the thermal expansion behavior of FeCoNi and Fe30Co30Ni30Cr10-xMnx high entropy alloys", Materials Chemistry, Vol. 271, pp. 124907, (2021).
[15]Z. Ahmad,“Principles of corrosion engineering and corrosion control”, Elsevier, (2006).
[16]張耀南,《與腐蝕有關的名詞字匯 (Ⅰ)》,中華民國防蝕協會,pp.80-81,(1989)。
[17]A. J. Bard, L. R. Faulkner, and H. S. White,“Electrochemical methods: fundamentals and applications”, John Wiley & Sons, (2022).
[18]M. Curley-Fiorino and G. Schmid, "The effect of the Cl− ion on the passive film on anodically polarized 304 stainless steel", Corrosion Science, Vol. 20, no. 3, pp. 313-329, (1980).
[19]B. N. Popov,“Corrosion engineering: principles and solved problems”, Elsevier, (2015).
[20]Y. Chou, J. Yeh, and H. Shih, "The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1. 5CrFeNi1. 5Ti0. 5Mox in aqueous environments", Corrosion Science, Vol. 52, no. 8, pp. 2571-2581, (2010).
[21]C. Clayton and Y. Lu, "A bipolar model of the passivity of stainless steel: the role of Mo addition", Journal of the Electrochemical Society, Vol. 133, no. 12, pp. 2465, (1986).
[22]W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, "Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries", Journal of Electrochemical Science Technology, Vol. 11, no. 1, pp. 1-13, (2020).
[23]N. Perez,“Electrochemistry and corrosion science”, Springer, (2004).
[24]S. Feliu Jr, "Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges", Metals, Vol. 10, no. 6, pp. 775, (2020).
[25]胡啟章,《電化學原理與方法》,五南圖書出版股份有限公司,pp.435-441,(2002)。
[26]D. E. Talbot and J. D. Talbot,“Corrosion science and technology”, CRC press, (2018).
[27]M. Kutz,“Handbook of environmental degradation of materials”, William Andrew, (2018).
[28]P. Marcus,“Corrosion mechanisms in theory and practice”, CRC press, (2011).
[29]G. Fontana Mars and D. Greene Norbert,“Corrosion Engineering”, McGraw-Hill Companies, (1986).
[30]G. Chen, M. Gao, and R. Wei, "Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3", corrosion Engineering, Science, Vol. 52, no. 01, (1996).
[31]A. G46-94, "Standard guide for examination and evaluation of pitting corrosion", ASTM International, (2005).
[32]U. R. Evans, "Stress corrosion: its relation to other types of corrosion", Corrosion Science, Vol. 7, no. 7, pp. 238-244, (1951).
[33]M. Laws and P. Goodhew, "Grain boundary structure and chromium segregation in a 316 stainless steel", Acta metallurgica et materialia, Vol. 39, no. 7, pp. 1525-1533, (1991).
[34]R. M. Bozorth,“Ferromagnetism”, (1993).
[35]L. Monaco, G. Avramovic-Cingara, G. Palumbo, and U. Erb, "Corrosion behaviour of electrodeposited nanocrystalline nickel-iron (NiFe) alloys in dilute H2SO4", Corrosion Science, Vol. 130, pp. 103-112, (2018).
[36]A. Tracy and R. Hungerford,「The Effect of the Iron Content of Cupro-Nickel on Its Corrosion Resistance in Seawater」,Proc. ASTM, 45,1945)。
[37]P. Gilbert, "Corrosion resisting properties of 90/10 Copper–nickel–iron alloy with particular reference to offshore oil and gas applications", British Corrosion Journal, Vol. 14, no. 1, pp. 20-25, (1979).
[38]W. Stewart and F. LaQue, "Corrosion resisting characteristics of iron modified 90: 10 cupro nickel alloy", Corrosion Engineering, Science, Vol. 8, no. 8, pp. 259-277, (1952).
[39]A.-M. Beccaria and J. Crousier, "Influence of iron addition on corrosion layer built up on 70Cu-30Ni alloy in sea water", British Corrosion Journal, Vol. 26, no. 3, pp. 215-219, (1991).
[40]R. Zhang, Z. Zhu, X. Leng, J. Pan, and Y. Zhang, "Corrosion characteristic of Cu-10Ni-Fex in 3.5% NaCl", Int. J. Electrochem. Sci, Vol. 13, pp. 11526-11538, (2018).
[41]Q. Fan et al., "Effect of high Fe content on the microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding", Surface Coatings Technology, Vol. 418, pp. 127242, (2021).
[42]G. Zhang et al., "Effect of Fe on microstructure and properties of AlCoCrFexNi (x= 1.5, 2.5) high entropy alloy coatings prepared by laser cladding", Intermetallics, Vol. 119, pp. 106722, (2020).
[43]T. Nishimura, H. Katayama, K. Noda, and T. Kodama, "Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments", Corrosion Science, Vol. 42, no. 9, pp. 1611-1621, (2000).
[44]K. H. Kim, S. H. Lee, N. D. Nam, and J. G. Kim, "Effect of cobalt on the corrosion resistance of low alloy steel in sulfuric acid solution", Corrosion Science, Vol. 53, no. 11, pp. 3576-3587, (2011).
[45]C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen, and J. W. Yeh, "Microstructure and mechanical properties of new AlCoxCrFeMo0. 5Ni High‐Entropy Alloys", Advanced Engineering Materials, Vol. 12, no. 1‐2, pp. 44-49, (2010).
[46]L. Huang, X. Wang, X. Zhao, C. Wang, and Y. Yang, "Analysis on the key role in corrosion behavior of CoCrNiAlTi-based high entropy alloy", Materials Chemistry Physics, Vol. 259, pp. 124007, (2021).
[47]S. Zhang, C. Wu, C. Zhang, M. Guan, and J. Tan, "Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance", Optics Laser Technology, Vol. 84, pp. 23-31, (2016).
[48]F. Liu, Q. Song, R. Chen, C. Wang, and J. Sun, "Effect of Co, Ni, Cu content on phase composition, microstructure and corrosion resistance of Co1-xCrFeNi1+ xCuy series high-entropy alloys", Vacuum, Vol. 210, pp. 111830, (2023).
[49]F. Wang and Y. Zhang, "Effect of Co addition on crystal structure and mechanical properties of Ti0. 5CrFeNiAlCo high entropy alloy", Materials Science Engineering: A, Vol. 496, no. 1-2, pp. 214-216, (2008).
[50]Z. Xia, M. Zhang, Y. Zhang, Y. Zhao, P. Liaw, and J. Qiao, "Effects of Ni-P amorphous films on mechanical and corrosion properties of Al0. 3CoCrFeNi high-entropy alloys", Intermetallics, Vol. 94, pp. 65-72, (2018).
[51]G. Koga et al., "Corrosion resistance of pseudo-high entropy Fe-containing amorphous alloys in chloride-rich media", Journal of Alloys Compounds, Vol. 884, pp. 161090, (2021).
[52]X. Yang et al., "A novel, amorphous, non-equiatomic FeCrAlCuNiSi high-entropy alloy with exceptional corrosion resistance and mechanical properties", Acta Metallurgica Sinica, Vol. 33, pp. 1057-1063, (2020).
[53]S. Zheng, Z. Cai, J. Pu, C. Zeng, and L. Wang, "Passivation behavior of VAlTiCrSi amorphous high-entropy alloy film with a high corrosion-resistance in artificial sea water", Applied Surface Science, Vol. 542, pp. 148520, (2021).
[54]L. Zhang et al., "Influence of sealing treatment on the corrosion behavior of HVAF sprayed Al-based amorphous/nanocrystalline coating", Surface Coatings Technology, Vol. 353, pp. 263-273, (2018).
[55]S. Zhang, Z. Zhang, P. He, Y. Gao, and X. Liang, "Effect of Co addition on the microstructure, thermal stability and anti-corrosion properties of AlNiZrYCox high-entropy metallic glass ribbons", Journal of Non-crystalline Solids, Vol. 585, pp. 121555, (2022).
[56]H. Bhadeshia and R. Honeycombe,“Steels: microstructure and properties”, Butterworth-Heinemann, (2017).
[57]C. A. Powell and H. T. Michels, "Copper-nickel alloys for seawater corrosion resistance and anti-fouling-a state of the art review", NACE CORROSION, pp. NACE-00627, (2000).
[58]P. Crook and processes, "Corrosion-resistant nickel alloys, Part 1: nickel alloys provide levels of corrosion resistance not possible with other alloys. This is part one of a three-part series about corrosion-resistant nickel alloys", Advanced materials, Vol. 165, no. 6, pp. 37-40, (2007).
[59]H. S. Klapper, N. S. Zadorozne, and R. B. Rebak, "Localized corrosion characteristics of nickel alloys: a review", Acta Metallurgica Sinica, Vol. 30, pp. 296-305, (2017).
[60]M. O. Speidel, "Stress corrosion cracking of stainless steels in NaCl solutions", Metallurgical transactions A, Vol. 12, pp. 779-789, (1981).
[61]S. Mulford and D. Tromans, "Crevice corrosion of nickel-based alloys in neutral chloride and thiosulfate solutions", Corrosion Engineering, Science, Vol. 44, no. 12, pp. 891-900, (1988).
[62]K. A. Gruss, D. S. Dunn, G. A. Cragnolino, and N. Sridhar, "Repassivation potential for localized corrosion of alloys 625 and C22 in simulated repository environments", NACE CORROSION, pp. 98149, (1998).
[63]B. Kehler, G. Ilevbare, and J. Scully, "Crevice corrosion stabilization and repassivation behavior of alloy 625 and alloy 22", Corrosion Engineering, Science, Vol. 57, no. 12, pp. 1042-1065, (2001).
[64]C.-C. Juan et al., "On microstructure and mechanical performance of AlCoCrFeMo0. 5Nix high-entropy alloys", Intermetallics, Vol. 32, pp. 401-407, (2013).
[65]C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, "On the elemental effect of AlCoCrCuFeNi high-entropy alloy system", Materials letters, Vol. 61, no. 1, pp. 1-5, (2007).
[66]X.-W. Qiu and C.-G. Liu, "Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding", Journal of Alloys Compounds, Vol. 553, pp. 216-220, (2013).
[67]P. Cui et al., "Corrosion behavior and mechanism of dual phase Fe1. 125Ni1. 06CrAl high entropy alloy", Corrosion Science, Vol. 201, pp. 110276, (2022).
[68]C.-C. Yen et al., "Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution", Corrosion Science, Vol. 157, pp. 462-471, (2019).
[69]K. Shiobara, Y. Sawada, and S. Morioka, "Potentiostatic study on the anodic behaviour of iron-chromium alloys", Transactions of the Japan Institute of Metals, Vol. 6, no. 1, pp. 58-62, (1965).
[70]S. Thomas, N. Birbilis, M. S. Venkatraman, and I. S. Cole, "Self-repairing oxides to protect zinc: Review, discussion and prospects", Corrosion science, Vol. 69, pp. 11-22, (2013).
[71]R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, and U. Stolz, "The passivity of iron-chromium alloys", Corrosion science, Vol. 29, no. 7, pp. 899-917, (1989).
[72]P. Keller and H.-H. Strehblow, "XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4", Corrosion Science, Vol. 46, no. 8, pp. 1939-1952, (2004).
[73]X. Yan et al., "Al0. 3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties", Journal of Alloys Compounds, Vol. 860, pp. 158436, (2021).
[74]Q. Li, T. M. Yue, Z. Guo, and X. Lin, "Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process", Metallurgical materials transactions and ASM International 2012, Vol. 44, pp. 1767-1778, (2013).
[75]W. Chai, T. Lu, and Y. Pan, "Corrosion behaviors of FeCoNiCrx (x= 0, 0.5, 1.0) multi-principal element alloys: role of Cr-induced segregation", Intermetallics, Vol. 116, pp. 106654, (2020).
[76]Z. Tang, L. Huang, W. He, and P. K. Liaw, "Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys", Entropy, Vol. 16, no. 2, pp. 895-911, (2014).
[77]D. Jones, (1996). Principles and Prevention of Corrosion, 2nd edn Prentice-Hall, UK.
[78]D. Jones,“Principles and Prevention of Corrosion, 2nd edn Prentice-Hall”, UK, (1996).
[79]C. Lee, C. Chang, Y. Chen, J. Yeh, and H. Shih, "Effect of the aluminum content of AlxCrFe1. 5MnNi0. 5 high-entropy alloys on the corrosion behaviour in aqueous environments", Corrosion Science, Vol. 50, no. 7, pp. 2053-2060, (2008).
[80]Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, "Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids", Corrosion Science, Vol. 52, no. 3, pp. 1026-1034, (2010).
[81]S. Khireche, D. Boughrara, A. Kadri, L. Hamadou, and N. Benbrahim, "Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl solution", Corrosion Science, Vol. 87, pp. 504-516, (2014).
[82]Y. Shi, B. Yang, X. Xie, J. Brechtl, K. A. Dahmen, and P. K. Liaw, "Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior", Corrosion Science, Vol. 119, pp. 33-45, (2017).
[83]X. Tan et al., "Correlation between microstructure and soft magnetic parameters of Fe-Co-Ni-Al medium-entropy alloys with FCC phase and BCC phase", Intermetallics, Vol. 126, pp. 106898, (2020).
[84]T. Zuo, R. Li, X. Ren, and Y. Zhang, "Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy", Journal of magnetism magnetic materials, Vol. 371, pp. 60-68, (2014).
[85]S. Van Gils, C. Melendres, H. Terryn, and E. Stijns, "Use of in-situ spectroscopic ellipsometry to study aluminium/oxide surface modifications in chloride and sulfuric solutions", Thin solid films, Vol. 455, pp. 742-746, (2004).
[86]Y. Shi et al., "Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance", Corrosion Science, Vol. 133, pp. 120-131, (2018).
[87]Y. Fu, C. Dai, H. Luo, D. Li, C. Du, and X. Li, "The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions", Applied Surface Science, Vol. 560, pp. 149854, (2021).
[88]E. Jumaev et al., "Chemical evolution-induced strengthening on AlCoCrNi dual-phase high-entropy alloy with high specific strength", Journal of Alloys Compounds, Vol. 777, pp. 828-834, (2019).
[89]Y.-J. Hsu, W.-C. Chiang, and J.-K. Wu, "Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution", Materials Chemistry Physics, Vol. 92, no. 1, pp. 112-117, (2005).
[90]Y.-A. Shen, H.-M. Hsieh, S.-H. Chen, J. Li, S.-W. Chen, and H. Nishikawa, "Investigation of FeCoNiCu properties: Thermal stability, corrosion behavior, wettability with Sn-3.0 Ag-0.5 Cu and interlayer formation of multi-element intermetallic compound", Applied Surface Science, Vol. 546, pp. 148931, (2021).
[91]B. Ren, Z. Liu, D. Li, L. Shi, B. Cai, and M. Wang, "Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution", Materials Corrosion Vol. 63, no. 9, pp. 828-834, (2012).
[92]H. Diao, L. J. Santodonato, Z. Tang, T. Egami, and P. K. Liaw, "Local structures of high-entropy alloys (HEAs) on atomic scales: an overview", Jom, Vol. 67, pp. 2321-2325, (2015).
[93]C.-W. Tsai, M.-H. Tsai, J.-W. Yeh, and C.-C. Yang, "Effect of temperature on mechanical properties of Al0. 5CoCrCuFeNi wrought alloy", Journal of Alloys Compounds, Vol. 490, no. 1-2, pp. 160-165, (2010).
[94]S. Guo, C. Ng, J. Lu, and C. Liu, "Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys", Journal of applied physics, Vol. 109, no. 10, pp. 103505, (2011).
[95]R. E. Smallman and A. Ngan,“Physical metallurgy and advanced materials”, Elsevier, (2011).
[96]F. Otto, Y. Yang, H. Bei, and E. P. George, "Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys", Acta Materialia, Vol. 61, no. 7, pp. 2628-2638, (2013).
[97]G. Salishchev et al., "Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system", Journal of Alloys Compounds, Vol. 591, pp. 11-21, (2014).
[98]J. Han et al., "Potential dependent Mn oxidation and its role in passivation of Ni38Fe20Cr22Mn10Co10 multi-principal element alloy using multi-element resolved atomic emission spectroelectrochemistry", Journal of The Electrochemical Society, Vol. 168, no. 5, pp. 51508, (2021).
[99]Z. Han et al., "The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys", Journal of Alloys Compounds, Vol. 816, pp. 152583, (2020).
[100]Q. Ye et al., "Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating", Applied Surface Science, Vol. 396, pp. 1420-1426, (2017).
[101]H. Torbati-Sarraf, M. Shabani, P. D. Jablonski, G. J. Pataky, and A. Poursaee, "The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures", Materials Design, Vol. 184, pp. 108170, (2019).
[102]J. Yang et al., "Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution", Journal of Alloys Compounds, Vol. 819, pp. 152943, (2020).
[103]Z. Fan et al., "Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys", Acta Materialia, Vol. 164, pp. 283-292, (2019).
[104]L. Wang, T. Maxisch, and G. Ceder, "Oxidation energies of transition metal oxides within the GGA+ U framework", Physical Review B, Vol. 73, no. 19, pp. 195107, (2006).
[105]S. Zhao, Y. Osetsky, G. M. Stocks, and Y. Zhang, "Local-environment dependence of stacking fault energies in concentrated solid-solution alloys", npj Computational Materials, Vol. 5, no. 1, pp. 13, (2019).
[106]徐國閔,「FeCrNiCoMnx (x= 1~ 0) 高熵合金工業級塊材顯微結構與腐蝕行為之研究」,博士論文,
[107]C.-H. Tsau, S.-X. Lin, and C.-H. Fang, "Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys", Materials Chemistry, Vol. 186, pp. 534-540, (2017).
[108]李岳翰,「高熵合金系統與無鉛銲料界面反應之評估與研究」,碩士論文,國立中正大學,(2021)。
[109]J. Xu et al., "Annealing-dependent microstructure, magnetic and mechanical properties of high-entropy FeCoNiAl0. 5 alloy", Materials Science Engineering: A, Vol. 776, pp. 139003, (2020).
[110]B. Jia, X. Liu, H. Wang, Y. Wu, and Z. Lu, "Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion", Science China Technological Sciences, Vol. 61, pp. 179-183, (2018).
[111]X. Wang, M. Xu, N. Liu, and L. Liu, "The formation of sigma phase in the CoCrFeNi high-entropy alloys", Materials Research Express, Vol. 8, no. 7, pp. 076514, (2021).
[112]Y. Shao, H. Ma, and Y. Wang, "Effect of Mo addition on the microstructure and mechanical properties of CoCuFeNi high entropy alloy", Metals, Vol. 10, no. 8, pp. 1017, (2020).
[113]G. X. Ye et al., "Study of solidification microstructures of multi-principal high-entropy alloy FeCoNiCrMn by using experiments and simulation", Advanced Materials Research, Vol. 399, pp. 1746-1749, (2012).
[114]S. Zhang et al., "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode", Nature Communications, Vol. 14, no. 1, pp. 4822, (2023).
[115]K. L. Moore, J. M. Sykes, S. C. Hogg, and P. S. Grant, "Pitting corrosion of spray formed Al–Li–Mg alloys", Corrosion Science, Vol. 50, no. 11, pp. 3221-3226, (2008).
[116]J. Ma, J. Wen, Q. Li, and Q. Zhang, "Effects of acidity and alkalinity on corrosion behaviour of Al–Zn–Mg based anode alloy", Journal of Power Sources, Vol. 226, pp. 156-161, (2013).
[117]H. Chen, "Metallic Corrosion", Beijing Institute of Technology Press, pp. 86, (1995).
[118]B. Wilde, "A critical appraisal of some popular laboratory electrochemical tests for predicting the localized corrosion resistance of stainless alloys in sea water", Corrosion Engineering, Science, Vol. 28, no. 8, pp. 283-291, (1972).
[119]S. Esmailzadeh, M. Aliofkhazraei, and H. Sarlak, "Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review", Protection of metals physical chemistry of surfaces, Vol. 54, pp. 976-989, (2018).
[120]B. Wang, J. Liu, M. Yin, Y. Xiao, X. Wang, and J. He, "Comparison of corrosion behavior of Al‐Mn and Al‐Mg alloys in chloride aqueous solution", Materials Corrosion, Vol. 67, no. 1, pp. 51-59, (2016).
[121]M. d. R. F. Hurtado, P. T. A. Sumodjo, and A. V. Benedetti, "Electrochemical studies with a Cu–5wt.% Ni alloy in 0.5 M H2SO4", Electrochimica Acta, Vol. 48, no. 19, pp. 2791-2798, (2003).
[122]K.-M. Hsu, S.-H. Chen, and C.-S. Lin, "Microstructure and corrosion behavior of FeCrNiCoMnx (x= 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4", Corrosion Science, Vol. 190, pp. 109694, (2021).
[123]M. Keddam, O. R. Mottos, and H. Takenouti, "Reaction model for iron dissolution studied by electrode impedance: I. Experimental results and reaction model", Journal of the Electrochemical Society, Vol. 128, no. 2, pp. 257, (1981).
[124]M. Keddam, O. Mattos, and H. Takenouti, "Mechanism of anodic dissolution of iron-chromium alloys investigated by electrode impedances—I. Experimental results and reaction model", Electrochimica Acta, Vol. 31, no. 9, pp. 1147-1158, (1986).
[125]S. Praveen, B. Murty, and R. S. Kottada, "Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys", Materials Science Engineering: A, Vol. 534, pp. 83-89, (2012).
[126]K. Pradeep, N. Wanderka, P. Choi, J. Banhart, B. Murty, and D. Raabe, "Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography", Acta Materialia, Vol. 61, no. 12, pp. 4696-4706, (2013).
[127]S. Singh, N. Wanderka, B. Murty, U. Glatzel, and J. Banhart, "Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy", Acta Materialia, Vol. 59, no. 1, pp. 182-190, (2011).
[128]C. B. Nascimento, U. Donatus, C. T. Rios, and R. A. Antunes, "Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution", Journal of Materials Research Technology, Vol. 9, no. 6, pp. 13879-13892, (2020).
[129]A. S. Hamdy, E. El-Shenawy, and T. El-Bitar, "Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl", International Journal of Electrochemical Science, Vol. 1, no. 4, pp. 171-180, (2006).
[130]M. Janik-Czachor and Z. Szklarska-Smialowska, "Pitting corrosion of single crystals of the Fe-16 Cr alloy in solutions containing Cl− ions", Corrosion Science, Vol. 8, no. 4, pp. 215-220, (1968).
[131]Y. Tang, Y. Zuo, and X. Zhao, "The metastable pitting behaviors of mild steel in bicarbonate and nitrite solutions containing Cl−", Corrosion Science, Vol. 50, no. 4, pp. 989-994, (2008).
[132]J. Kish, M. Ives, and J. Rodda, "Corrosion mechanism of nickel-containing stainless steels in concentrated aqueous solutions of sulfuric acid", Corrosion, Vol. 60, no. 06, (2004).
[133]L.-F. Li, M. Daerden, P. Caenen, and J.-P. Celis, "Electrochemical behavior of hot-rolled 304 stainless steel during chemical pickling in HCl-based electrolytes", Journal of the Electrochemical Society, Vol. 153, no. 5, pp. B145, (2006).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊