跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何旻昕
研究生(外文):HO,MIN-HSIN
論文名稱:國際油價波動性對台灣股票報酬預測力的探討
論文名稱(外文):Forecasting Power of International Oil Price Volatility On The Taiwan Stock Returns
指導教授:李偉銘李偉銘引用關係
指導教授(外文):LEE,WEI-MING
口試委員:賴靖宜陳和全
口試委員(外文):LAI,JIN-YICHEN,HE-CYUAN
口試日期:2024-06-20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:經濟系國際經濟學研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:46
中文關鍵詞:油價波動性台灣股票報酬樣本內外預測三倍標準差
外文關鍵詞:Oil price valitilityTaiwan stock returnsIn-sample and out-of-sample predictionThree standard deviations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討國際原油價格波動性是否有助於預測台灣加權股價指數報酬率。除了以已實現波動 (realized volatility) 衡量西德州與布蘭特 (Brent) 原油價格波動性外,並依據 Xiao and Wang (2022) 而將其區分為好的油價波動與壞的油價波動。另一方面,本論文亦考慮Chen et al. (2022) 所建構的 RSJV油價波動變數。應用 36 年共 436 筆的月資料,本文分別探討這四種波動性指標針對臺灣加權股價指數報酬率的樣本內與樣本外預測表現。本研究在樣本內的預測表現部分的主要實證發現為,相較於Xiao and Wang (2022) 和 Chen et al. (2022) 的實證結果顯示國際原油價格波動性對美國股市報酬具有預測力,本研究的實證結果則顯示不論是否有考量其他控制變數,這四種波動性指標對台灣股市報酬皆無顯著的預測力。然而進一步將樣本期間以石油金融化的 2003 年作為分界後,本文發現在考量其他控制變數後僅有壞的油價波動在石油金融化之前具有顯著的預測力。至於樣本外的預測表現部分,本研究的實證結果則顯示,不論是否有考量其他控制變數、應用不同的樣本內資料占總資料之比例、與引入三倍股票報酬標準差做為經濟限制,在大部分的情況下,所有的油價波動性指標對台灣股市皆不具有顯著的預測力。
This paper explores whether the volatility of international crude oil prices helps predict the return rate of the Taiwan Weighted Stock Index (TAIEX). In addition to using realized volatility to measure the volatility of West Texas Intermediate (WTI) and Brent crude oil prices, this study also categorizes the volatility into good and bad oil price volatility based on Xiao and Wang (2022). Furthermore, this paper considers the RSJV oil price volatility variable constructed by Chen et al. (2022). Using 436 monthly data points over 36 years, this study investigates the in-sample and out-of-sample predictive performance of these four volatility indicators for the return rate of TAIEX.
The main empirical finding for in-sample predictive performance is that, unlike the empirical results of Xiao and Wang (2022) and Chen et al. (2022), which show that international crude oil price volatility has predictive power for U.S. stock market returns, this study's empirical results indicate that these four volatility indicators do not have significant predictive power for Taiwan's stock market returns, regardless of whether other control variables are considered. However, when the sample period is divided at the year 2003, marking the onset of oil financialization, this paper finds that only bad oil price volatility has significant predictive power before oil financialization, after considering other control variables.
As for out-of-sample predictive performance, the empirical results of this study show that, regardless of whether other control variables are considered, different proportions of in-sample data are used, or three times the standard deviation of stock returns is introduced as an economic constraint, none of the oil price volatility indicators have significant predictive power for Taiwan's stock market in most cases.
謝辭 I
摘要 II
表目錄 IV
圖目錄 V
1.前言 1
2.文獻回顧 3
3.研究方法 11
3.1油價波動性指標的建構 12
3.2樣本內預測表現 13
3.2.1無控制變數之迴歸模型 13
3.2.2加入控制變數之迴歸模型 14
3.3樣本外預測表現 15
3.3.1模型建立 15
3.3.2預測方法和ROS 15
3.3.3檢定方法及CW統計量 17
3.4經濟限制 17
4.實證資料敘述 18
5.實證結果與分析 22
5.1樣本內預測 23
5.1.1樣本內預測結果與分析 23
5.1.2 樣本內小結 31
5.2 樣本外預測 34
5.2.1樣本外預測結果與分析 34
5.2.2樣本外小結 40
6.結論 40
參考文獻 43
附錄 46

一、中文部分
王柏堯 (2023) 。油價變動偏態係數對台灣股價報酬預測表現之探討,中正大學國際經
濟研究所碩士論文。
李佳蓁 (2018) 。國際油價對台灣股價預測表現之研究,中正大學國際經濟研究所碩士
論文。
胡育豪 (2011) 。油價對股價預測能力之研究,全球商業經營管理學報,3,131−142。

二、英文部分
Barndorff-Nielsen, O. E., S. Kinnebrock, and N. Shephard (2010). Measuring downside risk–realised semivariance, Unpublished Working Paper, University of Aarhus and University of Oxford.
Barsky, R. B. and L. Kilian (2004). Oil and the macroeconomy since the 1970s, Journal of Economic Perspectives, 18, 4, 115-134.
Boucher, C., A. Jasinski and S. Tokpavi (2023). Conditional mean reversion of financial ratios and the predictability of returns, Journal of International Money and Finance, 137, 102907.
Chen, N, -F., R. Roll and S. A. Ross (1986). Economic forces and the stock market, Journal of Business, 59, 3, 383-403.
Chen, W., J. Chevallier, J. Wang and J. Zhong (2022). Stock market return predictability revisited: Evidence from a new index constructing the oil market, Finance Research Letters , 49, 103-106.
Clark, T. E. and K. D. West (2007). Approximately normal tests for equal predictive accuracy in nested models, Journal of Econometrics, 138, 291-311.
Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy, Journal of Business & Economic Statistics, 20, 134-144.
Driesprong, G., B. Jacobsen and B. Maat (2008). Striking oil: Another puzzle? Journal of Financial Economics, 89, 307-327.
Edelstein, P. and L. Kilian (2009). How sensitive are consumer expenditures to retail energy prices? Journal of Monetary Economics, 56, 766-779.
Elyasiani, E., I. Mansur and B. Odusami (2011). Oil price shocks and industry stock returns, Energy Economics, 33, 966-974.
Hamilton, J. D. (1983). Oil and the macroeconomy since World War II, Journal of Political Economy, 91, 228-248.
Huang, H, -H., J, -X. Liao, C, -P. Wang (2023). Forecasting Taiwan stock returns via crude oil and gold futures, Asia Pacific Management Review, 28, 611-624.
Jones, C. M. and G. Kaul (1996). Oil and the stock markets, The Journal of Finance, 51, 463-491.
Lyu, Y, -F (2021). Accounting for the declining economic effects of oil price shocks, Energy Economics, 96, 105015.
McCracken, M. W. and S. Ng (2016). FRED-MD: A monthly database for macroeconomic research, Journal of Business and Economic Statistics, 34, 574-589.
Narayan, P. K. and S. S. Sharma (2011). New evidence on oil price and firm returns, Journal of Banking and Finance, 12, 3253-3262.
Newey, W. and K. West (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica, 55, 703-708.
Newey, W. and K. West (1994). Automatic lag selection in covariance matrix estimation, The Review of Economic Studies, 61, 631-653.
Nonejad, N. (2018). Déjà vol oil? Predicting S&P 500 equity premium using crude oil price volatility: Evidence from old and recent time-series data, International Review of Financial Analysis, 58, 260-270.
Nonejad, N. (2020). Crude oil price volatility and equity return predictability: A comparative out-of-sample study, International Review of Financial Analysis, 71, 101521.
Nonejad, N. (2021). Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large-scale out-of-sample forecast evaluation of US macroeconomic data, Journal of Forecasting, 40, 769-791.
Patton, A. J. and K. Sheppard (2015). Good volatility, bad volatility: Signed jumps and the persistence of volatility, Review of Economics and Statistics, 97, 683-697.
Phan, D. H. B., S. S. Sharma and P. K. Narayan (2015). Stock return forecasting: Some new evidence, International Review of Financial Analysis, 40, 38-51.
Salisu, A. A. and K. O. Isah (2017). Revisiting the oil price and stock market nexus: A nonlinear panel ARDL approach, Economic Modelling, 66, 258-271.
Salisu, A. A. and X. V. Vo (2020). Predicting stock returns in the presence of COVID−19 pandemic:
The role of health news, International Review of Financial Analysis, 71, 101546.
Sadorsky, P. (1999). Oil price shocks and stock market activity, Energy Economics 21, 449-469.
Wang, Y., Z. Pan, L. Liu and C. Wu (2019). Oil price increases and the predictability of equity premium, Journal of Banking and Finance, 102, 43-58.
Xiao, J. and Y. Wang (2022). Good oil volatility, bad oil volatility, and stock return predictability, International Review of Economics and Finance, 80, 953-966.
Zhang, Y., Y. Wei, F. Ma and Y. Yi (2019). Economic constraints and stock return predictability: A new approach, International Review of Financial Analysis, 63, 1-9.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top