跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊俊元
研究生(外文):YANG, JUN-YUAN
論文名稱:發展學生3D設計能力之有效教學策略及學習成效評估
論文名稱(外文):Effective Teaching Strategies and Evaluation of Learning Effectiveness in Developing Students’ 3D Design Skills
指導教授:游寶達游寶達引用關係
指導教授(外文):YU, PAO-TA
口試委員:蔡鴻旭許政穆
口試日期:2024-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:97
中文關鍵詞:3D列印技能發展精熟學習螺旋式課程STEAM教育
外文關鍵詞:3D PrintingSkills DevelopmentMastery LearningSpiral CurriculumSTEAM Education
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,將3D列印運用至STEAM課程的研究越來越多,且已被證實能培養學生創造力和有益於學生學習STEAM學科等正面影響。本研究設計了基於STEAM教育概念的3D列印課程,旨在探討學生在課程中3D列印相關技能的發展,同時了解學生的學習成效,並尋找適合的教學模式。本研究以大學生為研究對象,課程共分為兩個階段,分別有16位和10位學生參加。每階段的教學時間為3小時,共計6小時。課程分為「認識3D列印」、「3D建模實務」和「切片及列印機操作實務」共三大單元,其中包含8個建模任務,以及4個切片及列印機操作任務。本研究選擇Tinkercad和Cura分別作為課程中3D建模及切片時使用的軟體。
研究結果發現,利用精熟學習(Mastery Learning)和螺旋式課程(Spiral Curriculum)的概念設計3D列印課程,有助於學生培養3D列印相關的技能。課程中採用異質性分組和列印機操作影片輔助教學,也能提升學生3D列印相關的技能。學生透過本研究的教材和教學方式,歷經兩個階段的學習和實作,即能掌握和靈活運用建模軟體大部分的功能,並設計和列印出精緻的3D列印作品。另外,在3D建模實務的單元,教師可以選擇學生感興趣的主題,提升學生的學習動機。還有,建議給學生較充裕的建模時間,並設下數檢驗點以掌控進度。若是要教初次學習操作3D列印機的學生,建議選擇準備操作方式較簡單的入門機型,來降低學習門檻。
In recent years, there has been an increasing amount of research into the use of 3D printing in STEAM programs, and it has been shown to have a positive impact on fostering student creativity and benefiting student learning in STEAM subjects. This study designed a 3D printing curriculum based on the concept of STEAM Education, aiming to investigate the development of 3D printing related skills of students in the curriculum, to understand the learning effectiveness of students, and to find out the suitable teaching model. This study was conducted on university students. The course was divided into two stages and was attended by 16 and 10 students respectively. Each stage of instruction will last 3 hours, totaling 6 hours. The course is divided into three parts, namely “Introduction to 3D Printing”, “3D Modeling Practice” and “Slicing Software and 3D Printer Operation Practice”, which includes 8 modeling tasks and 4 slicing software and 3D printer operation tasks. In this study, Tinkercad and Cura were chosen as the software used for 3D modeling and slicing in the course respectively.
The results of the study found that designing a 3D printing curriculum using the concepts of Mastery Learning and Spiral Curriculum helped students develop skills related to 3D printing. Heterogeneous Grouping and printer operation videos are used in the course to assist teaching and learning, and to enhance students’ skills related to 3D printing. Through the teaching materials and teaching methods of this study, students can master and flexibly use most of the functions of the modeling software, and design and print out exquisite 3D printed works after two stages of learning and practical work. In addition, in the part of 3D modeling practice, teachers can choose topics that students are interested in to enhance their learning motivation. It is also recommended to give students more time for modeling and to set up several checkpoint to control their progress. If you are teaching students who are learning to operate a 3D printer for the first time, it is recommended that you choose an introductory printer that is relatively simple to operate, to lower the learning threshold.
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 文獻探討 4
2.1 STEAM教育發展 4
2.2 精熟學習 6
2.3 布魯姆分類法與學習目標 9
2.3.1 認知領域(Cognitive Domain) 9
2.3.2 情意領域(Affective Domain) 12
2.3.3 技能領域(Psychomotor Domain) 13
2.4 3D列印的基本原理 19
2.4.1 3D列印技術的種類 19
2 4.2 3D列印產品的製作流程 20
2.4.3 建模軟體、建模技術和切片軟體 22
2.5 3D列印教學活動設計 26
第三章 研究設計與實施 29
3.1 研究對象與場域 29
3.2 教學實施設計 30
3.3 研究工具 39
第四章 結果與討論 43
4.1 第一階段課程 43
4.1.1 認識3D列印 44
4.1.2 3D建模實務 45
4.1.3 切片及列印機操作實務 51
4.1.4 整體課程的實施狀況和第二階段教學安排調整 53
4.2 第二階段課程 54
4.2.1 3D建模實務 55
4.2.2 切片及列印機操作實務 60
4.2.3 整體課程的實施狀況與省思 62
第五章 結論與未來研究方向 64
5.1 結論 64
5.2 未來研究方向 64
參考文獻 66
附錄一 教學活動設計 75
附錄二 3D建模學習單暨評量表 82
附錄三 3D建模學習單暨評量表的評量標準說明 90
附錄四 切片軟體操作檢核表 92
附錄五 3D列印機操作檢核表 93
附錄六 學生學習心得問卷 95
附錄七 學生建模作品舉隅 97
[1]Heather B. Gonzalez and Jeffrey J. Kuenzi, “Science, Technology, Engineering and Mathematics (STEM) Education: A Primer,” Congressional Research Services, 2012.
[2]T. Martín-Páez, D. Aguilera, F. J. Perales-Palacios, and J. M. Vílchez-González, “What Are We Talking About When We Talk About STEM Education? A Review of Literature,” Science Education, vol. 103, no. 4, pp. 799-822, July 2019.
[3]E. Perignat and J. Katz-Buonincontro, “STEAM in Practice and Research: An Integrative Literature Review,” Thinking Skills and Creativity, vol. 31, pp. 31-43, March 2019.
[4]J. Maeda, “STEM + Art = STEAM,” The STEAM Journal, vol. 1, March 2013.
[5]Judith M. Burton, R. Horowitz, and H. Abeles, “Learning in and Through the Arts: The Question of Transfer,” Studies in Art Education, vol. 41, no. 3, pp. 228-257, 2000.
[6]C. Liao, “From Interdisciplinary to Transdisciplinary: An Arts-Integrated Approach to STEAM Education,” ART education, vol. 69, no. 6, pp. 44-49, 2016.
[7]National Art Education Association, “Using Art Education to Build a Stronger Workforce Case Statement,” National Art Education Association, June 2016.
[8]A. Stroud and L. Baines, “Inquiry, Investigative Processes, Art, and Writing in STEAM,” in: Myint S. Khine and S. Areepattamannil, “STEAM Education: Theory and Practice”, Springer Cham, USA, pp. 1-18, January 2019.
[9]教育部,<關於12年國教>,網址:https://shs.k12ea.gov.tw/site/12basic/category?root=40&cid=16606&oid=90268。
[10]教育部,《十二年國民基本教育課程綱要國民中學暨普通型高級中等學校─科技領域》,2018年9月。
[11]游昊耘,,網址:https://flipedu.parenting.com.tw/article/009174。
[12]賓靜蓀,< 5大精神,培養STEAM新素養>,網址:https://flipedu.parenting.com.tw/article/003393?fromid=inarticle&id=009174。
[13]Chih-Hung Yu, Yu-Tzu Lin, Hsiang-Ting Chen, and Cheng-Chih Wu, “Effects of 3D Printing-Based STEAM Instruction on Students’ Creativity,” International Journal on Digital Learning Technology, vol. 11, no. 4, pp. 1-24, October 2019.
[14]Chiung-Yi Huang and Jen Chun Wang, “Effectiveness of a Three-Dimensional-Printing Curriculum: Developing and Evaluating an Elementary School Design-Oriented Model Course,” Computers & Education, vol.187, 104553, October 2022.
[15]Chiung-Yi Huang, “A Study of Evaluating the Construction and Implementation of 3D Printing Course in Elementary School,” Doctoral Thesis, National Kaohsiung Normal University, 2019.
[16]Benjamin S. Bloom, “Learning for Mastery,” Evaluation Comment, vol. 1, no. 2, pp. 1-12, 1968.
[17]M. Winget and Adam M. Persky, “A Practical Review of Mastery Learning,” American Journal of Pharmaceutical Education, vol. 86, no. 10, ajpe8906, December 2022.
[18]Thomas R. Guskey, “Closing Achievement Gaps: Revisiting Benjamin S. Bloom’s “Learning for Mastery”,” Journal of Advanced Academics, vol. 19, no. 1, pp. 8-31, 2007.
[19]Charlotte Ruhl, “Bloom’s Taxonomy of Learning,” Simply Psychology, https://www.simplypsychology.org/blooms-taxonomy.html, May 2021.
[20]Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst, Walker H. Hill, and David R. Krathwohl, “Taxonomy of Educational Objectives: The Classification of Educational Goals. Handbook 1: Cognitive Domain,” Addison-Wesley Longman Ltd., New York, 1956.
[21]David R. Krathwohl, Benjamin S. Bloom, and Bertram B. Masia, “Taxonomy of Educational Objectives Handbook II: Affective Domain,” David McKay Co., New York, 1964.
[22]Robert J. Armstrong, “Developing and Writing Behavioral Objectives,” Educational Innovators Press, Tucson, Arizona, 1970.
[23]Anita J. Harrow, “A Taxonomy of the Psychomotor Domain: A Guide for Developing Behavioral Objectives,” David McKay Co., New York, 1972.
[24]Elizabeth J. Simpson, “The Classification of Educational Objectives, Psychomotor Domain,” Illinois University Urbana, 1972.
[25]Lorin W. Anderson and David R. Krathwohl, “A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives,” Addison Wesley Longman, New York, 2001.
[26]Rafia Shabbir, “30 Examples of Bloom’s Taxonomy Learning Objectives For Teachers,” Educationise, https://www.educationise.com/post/30-bloom-s-taxonomy-examples-of-learning-objectives-for-teachers, October 2022.
[27]National Research Council, “Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics,” National Academies Press, Washington, DC, 2011.
[28]吳正己、林育慈、陳怡芬、張凌倩、賴錦緣,《中學資訊科技教材教法》,初版,台北市:教育部出版,ISBN: 978-986-5444-57-0,2020。
[29]Yi-Fang Chang, “The Impact of Integrating Mobile Devices with the Community of Inquiry (CoI) Model on the Learning Effectiveness of Computational Thinking Curriculum for Elementary School Students,” Master’s Thesis, National Chung Cheng University, 2023.
[30]Georgette Yakman, “What Is the Point of STE@M? – A Brief Overview,” STEAM Education, vol. 7, no. 9, pp. 1-9, 2010.
[31]Areej ElSayary, “Transdisciplinary STEAM Curriculum Design and Authentic Assessment in Online Learning: A Model of Cognitive, Psychomotor, and Affective Domains,” Journal of Turkish Science Education, vol. 18, no. 3, pp. 493-511, 2021.
[32]David A. Sousa and Thomas J. Pilecki, “From STEM to STEAM: Using Brain-Compatible Strategies to Integrate the Arts,” Corwin Press, USA, 2013.
[33]Andy Connor, Sangeeta Karmokar, and Chris Whittington, “From STEM to STEAM: Strategies for Enhancing Engineering & Technology Education,” International Journal of Engineering Pedagogy, vol. 5, no. 2, pp. 37-47, May 2015.
[34]陳詩妤,< 專題式學習PBL是什麼?課程設計、教學、評量一次看>,網址:https://flipedu.parenting.com.tw/article/007740。
[35]Alexey A. Chistyakov, Sergei P. Zhdanov, Elena L. Avdeeva, Elena A. Dyadichenko, Maria L. Kunitsyna, and Roza I. Yagudina, “Exploring the Characteristics and Effectiveness of Project-Based Learning for Science and STEAM Education,” Eurasia Journal of Mathematics, Science and Technology Education, vol. 19, no. 5, em2256, 2023.
[36]Ahmad Dasuki Mohd Hawari and Azlin Iryani Mohd Noor, “Project Based Learning Pedagogical Design in STEAM Art Education,” Asian Journal of University Education, vol. 16, no. 3, pp. 102-111, 2020.
[37]Shi Jer Lou, Yi Hui Liu, Ru Chu Shih, and Kuo Hung Tseng, “The Senior High School Students’ Learning Behavioral Model of STEM in PBL,” International Journal of Technology and Design Education, vol. 21, pp. 161-183, 2011.
[38]Barry N. Burke, “The ITEEA 6E Learning ByDesign™ Model: Maximizing Informed Design and Inquiry in the Integrative STEM Classroom,” Technology and Engineering Teacher, vol. 73, no. 6, pp. 14-19, March 2014.
[39]張玉山、楊雅茹, 〈STEM 教學設計之探討: 以液壓手臂單元為例〉,科技與人力教育季刊,第1卷,第1期,頁2-17,ISSN:2520-4335,2014年。
[40]Chih-Chao Chung, Chien-Linag Lin, and Shi-Jer Lou, “Analysis of the Learning Effectiveness of the STEAM-6E Special Course—A Case Study about the Creative Design of IoT Assistant Devices for the Elderly,” Sustainability, vol. 10, no. 9, 3040, 2018.
[41]Pattama Jongluecha and Wittaya Worapun, “Developing Grade 3 Student Science Learning Achievement and Scientific Creativity Using the 6E Model in STEAM Education,” Journal of Educational Issues, vol. 8, no. 2, pp. 142-151, 2022.
[42]George T. Doran, “There’s a SMART Way to Write Management’s Goals and Objectives,” American Management Association, 1981.
[43]R. F. Mager, “Preparing Instructional Objectives,” Fearon Publishers, Palo Alto, California, 1962.
[44]郭生玉,《教育測驗與評量》,修訂版第五版,台北市:精華書店出版,ISBN: 957-41-2047-3,2018。
[45]William C. McGaghie, Saul B. Issenberg, Jeffrey H. Barsuk, and Diane B. Wayne, “A Critical Review of Simulation‐Based Mastery Learning with Translational Outcomes,” Medical education, vol. 48, no. 4, pp. 375-385, 2014.
[46]Joanne Kerins, Elisabeth McCully, Suzanne Anderson Stirling, Samantha Eve Smith, James Tiernan, and Victoria Ruth Tallentire, “The Impact of Simulation-Based Mastery Learning, Booster Session Timing, and Clinical Exposure on Confidence in Intercostal Drain Insertion: A Survey of Internal Medicine Trainees in Scotland,” BMC Medical Education, vol. 22, no. 1, 621, 2022.
[47]Kaitlyn M. Vitale, Jeffrey H. Barsuk, Elaine R. Cohen, Diane B. Wayne, Renee N. Hansen, Lisa M. Williams, Madeline Rosenbaum, James M. Walter, and Clara J. Schroedl, “Simulation-Based Mastery Learning Improves Critical Care Skills of Advanced Practice Providers,” ATS Scholar, vol. 4, no. 1, pp. 48-60, 2023.
[48]Jeffrey H. Barsuk, William C. McGaghie, Elaine R. Cohen, Kevin J. O’Leary, and Diane B. Wayne, “Simulation-Based Mastery Learning Reduces Complications During Central Venous Catheter Insertion in a Medical Intensive Care Unit,” Critical Care Medicine, vol. 37, no. 10, pp. 2697-2701, 2009.
[49]Chi-Cheng Chang and Yiching Chen, “Using Mastery Learning Theory to Develop Task-Centered Hands-On STEM Learning of Arduino-Based Educational Robotics: Psychomotor Performance and Perception by a Convergent Parallel Mixed Method,” Interactive Learning Environments, vol. 30, no. 9, pp. 1677-1692, 2022.
[50]M. David Merrill, “A Task-Centered Instructional Strategy,” Journal of Research on Technology in Education, vol. 40, no. 1, pp. 5-22, 2007.
[51]黃光雄,《教育目標與評鑑》,第二版,高雄市:復文圖書出版社,1982。
[52]Dalton State College, “Educational Learning Theories: Chapter 10 Required Reading,” https://libguides.daltonstate.edu/c.php?g=722740&p=5523436, February 2021.
[53]George Mason University, “Harrow’s Taxonomy of Psychomotor Domain,” https://mason.gmu.edu/~ndabbagh/cehdclass/Resources/IDKB/harrowstax.htm.
[54]Gita Ayu Wandari, Agus Fany Chandra Wijaya, and Rika Rafikah Agustin, “The Effect of STEAM-Based Learning on Students’ Concept Mastery and Creativity in Learning Light and Optics,” Journal of Science Learning, vol. 2, no. 1, pp. 26-32, 2018.
[55]Irshad Ahmed, Ajab Ali Lashari, and Mehboob Ali Golo, “Evaluating Primary-Level English Textbooks of Single National Curriculum through the Lens of Bloom’s Taxonomy,” Pakistan Languages and Humanities Review, vol. 7, no. 3, pp. 352-361, 2023.
[56]Anne Herrmann-Werner, Teresa Festl-Wietek, Friederike Holderried, Lea Herschbach, Jan Griewatz, Ken Masters, Stephan Zipfel, and Moritz Mahling, “Assessing ChatGPT’s Mastery of Bloom’s Taxonomy Using Psychosomatic Medicine Exam Questions: Mixed-Methods Study,” Journal of Medical Internet Research, vol. 26, e52113, 2024.
[57]Simon Ford and Tim Minshall, “3D Printing in Education: A Literature Review,” Additive Manufacturing, vol. 1, 2016.
[58]Tuan D. Ngo, Alireza Kashani, Gabriele Imbalzano, Kate T. Q. Nguyen, and David Hui, “Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications, and Challenges,” Composites Part B: Engineering, vol. 143, pp.172-196, 2018.
[59]Mariano Jiménez, Luis Romero, Iris A. Domínguez, María del Mar Espinosa, and Manuel Domínguez, “Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects,” Complexity, vol. 2019, no. 1, 9656938, 2019.
[60]B. A. Praveena, N. Lokesh, A. Buradi, N. Santhosh, B. L. Praveena, and R. Vignesh, “A Comprehensive Review of Emerging Additive Manufacturing (3D Printing) Technology: Methods, Materials, Applications, Challenges, Trends, and Future Potential,” Materials Today: Proceedings, vol. 52, pp. 1309-1313, 2022.
[61]Ferry P. W. Melchels, Jan Feijen, and Dirk W. Grijpma, “A Review on Stereolithography and Its Applications in Biomedical Engineering,” Biomaterials, vol. 31, no. 24, pp. 6121-6130, 2010.
[62]Frederik Dilling, Felicitas Pielsticker, and Ingo Witzke, “Learning Mathematics in the Context of 3D Printing,” Springer Fachmedien Wiesbaden, Wiesbaden, 2023.
[63]Ana Barbosa, Isabel Vale, and Dina Alvarenga, “The Use of Tinkercad and 3D Printing in Interdisciplinary STEAM Education: A Focus on Engineering Design,” STEM Education, vol. 4, no. 3, pp. 222-246, 2024.
[64]Ahmet Çelik and Selçuk Özdemir, “Tinkering Learning in the Classroom: An Instructional Rubric for Evaluating 3D Printed Prototype Performance,” International Journal of Technology and Design Education, vol. 30, no. 3, pp. 459-478, 2020.
[65]Leonel Morales Díaz, Carlos Morales Hernández, Alex Viau Ortiz, and Laura Sanely Gaytán-Lugo, “Tinkercad and Codeblocks in a Summer Course: an Attempt to Explain Observed Engagement and Enthusiasm,” 2019 IEEE Blocks and Beyond Workshop (B&B), Memphis, TN, USA, pp. 43-47, 2019.
[66]Aybüke Pabuçcu Akiş and Işıl Demirer, “Integrated STEM Activity with 3D Printing and Entrepreneurship Applications,” Science Activities, vol. 60, no. 1, pp. 1-11, 2022.
[67]Mapsystem, “12 Best 3D Modeling Techniques Every 3D Designer Should Know,” https://mapsystemsindia.com/resources/Beginners-3d-modeling-techniques.html.
[68]Paria Ramezani, “What Are the Top 3D Modeling Techniques?,” https://pixune.com/blog/3d-modeling-techniques/, June 2024.
[69]3DMART,< 【切片軟體】Ultimaker樹形支撐:最少線材量,支撐無死角!>,網址:https://3dmart.com.tw/news/ultimaker-cura-use-tree-supports-to-3d-printing。
[70]DiMan,<什麼時候應該用到3D列印附著?給你3D列印品的完美秘密>,網址:https://diman.tw/news-Detail/3d-printing-raft-when-should-you-use-it。
[71]Tim J. Dowding, “The Application of a Spiral Curriculum Model to Technical Training Curricula,” Educational Technology, vol. 33, no. 7, pp. 18-28, 1993.
[72]Tien-Chi Huang, Mu-Yen Chen, and Chun-Yu Lin, “Exploring the Behavioral Patterns Transformation of Learners in Different 3D Modeling Teaching Strategies,” Computers in Human Behavior, vol. 92, pp. 670-678, 2019.
[73]Vladimir Lokalov and Igor Klimov, “Design Skills Assessment in Teaching 3D Modeling,” SHS Web of Conferences, vol. 66, pp. 01013, 2019.
[74]廖家現、范斯淳, 〈高中生活科技工程設計實作教學活動-以班級「養機場」為例〉,工業科技教育季刊,第13期,頁44-64,ISSN:2707-8639,2020年。

電子全文 電子全文(網際網路公開日期:20250801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top