|
[1]S. Banik, N. Sharma, M. Mangla, S. N. Mohanty, and S. S., “LSTM based decision support system for swing trading in stock market,” Knowledge-Based Systems, vol. 239, p. 107994, Mar. 2022, doi: 10.1016/j.knosys.2021.107994. [2]J. Shah, D. Vaidya, and M. Shah, “A comprehensive review on multiple hybrid deep learning approaches for stock prediction,” Intelligent Systems with Applications, vol. 16, p. 200111, Nov. 2022, doi: 10.1016/j.iswa.2022.200111. [3]W. Jiang, “Applications of deep learning in stock market prediction: Recent progress,” Expert Systems with Applications, vol. 184, p. 115537, Dec. 2021, doi: 10.1016/j.eswa.2021.115537. [4]D. P. Gandhmal and K. Kumar, “Systematic analysis and review of stock market prediction techniques,” Computer Science Review, vol. 34, p. 100190, Nov. 2019, doi: 10.1016/j.cosrev.2019.08.001. [5]J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under Concept Drift: A Review,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 12, pp. 2346–2363, Feb. 2019, doi: 10.1109/TKDE.2018.2876857. [6]X. You, M. Zhang, D. Ding, F. Feng, and Y. Huang, “Learning to Learn the Future: Modeling Concept Drifts in Time Series Prediction,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, in CIKM ’21. New York, NY, USA: Association for Computing Machinery, Oct. 2021, pp. 2434–2443. doi: 10.1145/3459637.3482271. [7]S. Agrahari and A. K. Singh, “Concept Drift Detection in Data Stream Mining : A literature review,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, Part B, pp. 9523–9540, Nov. 2022, doi: 10.1016/j.jksuci.2021.11.006. [8]A. Bifet and R. Gavaldà, “Learning from Time-Changing Data with Adaptive Windowing,” in Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), 0 vols., in Proceedings. , Society for Industrial and Applied Mathematics, 2007, pp. 443–448. doi: 10.1137/1.9781611972771.42. [9]A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional Concept Drift Detection and Density Synchronized Drift Adaptation,” in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, Aug. 2017, pp. 2280–2286. doi: 10.24963/ijcai.2017/317. [10]S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Jan. 1997, doi: 10.1162/neco.1997.9.8.1735. [11]J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with Drift Detection,” in Advances in Artificial Intelligence – SBIA 2004, A. L. C. Bazzan and S. Labidi, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2004, pp. 286–295. doi: 10.1007/978-3-540-28645-5_29. [12]M. Baena-García, J. Campo-Ávila, R. Fidalgo-Merino, A. Bifet, R. Gavald, and R. Morales-Bueno, “Early Drift Detection Method,” Jan. 2006. [13]I. Frías-Blanco, J. del Campo-Ávila, G. Ramos-Jiménez, R. Morales-Bueno, A. Ortiz-Díaz, and Y. Caballero-Mota, “Online and Non-Parametric Drift Detection Methods Based on Hoeffding’s Bounds,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp. 810–823, Mar. 2015, doi: 10.1109/TKDE.2014.2345382. [14]G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Exponentially weighted moving average charts for detecting concept drift,” Pattern Recognition Letters, vol. 33, no. 2, pp. 191–198, Jan. 2012, doi: 10.1016/j.patrec.2011.08.019. [15]R. C. Cavalcante and A. L. I. Oliveira, “An approach to handle concept drift in financial time series based on Extreme Learning Machines and explicit Drift Detection,” in 2015 International Joint Conference on Neural Networks (IJCNN), Jul. 2015, pp. 1–8. doi: 10.1109/IJCNN.2015.7280721. [16]K. Nishida and K. Yamauchi, “Detecting Concept Drift Using Statistical Testing,” in Discovery Science, V. Corruble, M. Takeda, and E. Suzuki, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2007, pp. 264–269. doi: 10.1007/978-3-540-75488-6_27. [17]T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, “An Information-Theoretic Approach to Detecting Changes in MultiDimensional Data Streams,” Interfaces, Jan. 2006. [18]D. D. H. Bailey, “Advances in Financial Machine Learning”. [19]W. J. Faithfull, J. J. Rodríguez, and L. I. Kuncheva, “Combining univariate approaches for ensemble change detection in multivariate data,” Information Fusion, vol. 45, pp. 202–214, Jan. 2019, doi: 10.1016/j.inffus.2018.02.003.
|