|
[1]臺灣一年超過10萬人因骨折就醫 Available:https://www.advisers.com.tw/?p=11832(2024, 06, 28) [2]台灣骨折率亞洲之冠 長者1年內死亡率36%「比癌症更致命」 Available:https://www.healthnews.com.tw/article/59624(2024, 06, 28) [3]三總醫世代電子報第244期 Available:https://enews.tsgh.ndmctsgh.edu.tw/edm/content_detail.aspx?eid=548(2024, 06, 28) [4]X光片下的灰白,如何利用X光片檢查關節傷害 Available:https://www.sem.org.tw/EJournal/Detail/219(2024, 06, 28) [5]Yang, S., Yin, B., Cao, W., Feng, C., Fan, G., & He, S. (2020). Diagnostic accuracy of deep learning in orthopaedic fractures: a systematic review and meta-analysis. Clinical radiology, 75(9), 713-e17. [6]Hardalaç, F., Uysal, F., Peker, O., Çiçeklidağ, M., Tolunay, T., Tokgöz, N., ... & Mert, F. (2022). Fracture detection in wrist X-ray images using deep learning-based object detection models. Sensors, 22(3), 1285. [7]Bhat, A. K., Kumar, B., & Acharya, A. (2011). Radiographic imaging of the wrist. Indian journal of plastic surgery: official publication of the Association of Plastic Surgeons of India, 44(2), 186. [8]Trauma X-ray - Upper limb Available:https://www.radiologymasterclass.co.uk/tutorials/musculoskeletal/x-ray_trauma_upper_limb/wrist_trauma_x-ray(2024, 06, 28) [9]深度學習是什麼? Available:https://ithelp.ithome.com.tw/articles/10264238?sc=iThelpR(2024, 06, 28) [10]維基百科深度學習 Available:https://zh.wikipedia.org/zh-tw/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0(2024, 06, 28) [11]CNN:卷積深度神經網路的解釋方法 Available:https://ithelp.ithome.com.tw/articles/10332039?sc=rss.iron(2024, 06, 28) [12]激活函數 Available:https://ithelp.ithome.com.tw/m/articles/10276865(2024, 06, 28) [13]Batch Normalization 介紹 Available:https://medium.com/ching-i/batch-normalization-%E4%BB%8B%E7%B4%B9-135a24928f12(2024, 06, 28) [14]Rashid, T., Zia, M. S., Meraj, T., Rauf, H. T., & Kadry, S. (2023). A minority class balanced approach using the DCNN-LSTM method to detect human wrist fracture. Life, 13(1), 133. [15]Alammar, Z., Alzubaidi, L., Zhang, J., Li, Y., Lafta, W., & Gu, Y. (2023). Deep transfer learning with enhanced feature fusion for detection of abnormalities in x-ray images. Cancers, 15(15), 4007. [16]Rajpurkar, P., Irvin, J., Bagul, A., Ding, D., Duan, T., Mehta, H., ... & Ng, A. Y. (2017). Mura: Large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint arXiv:1712.06957. [17]Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258). [18]Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning.In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1). [19]Joshi, D., & Singh, T. P. (2022, December). Novel Use of Deep Convolution Architecture Pre-Trained on Surface Crack Dataset to Localize and Segment Wrist Bone Fractures. In 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART) (pp. 1308-1313). IEEE. [20]Yang, F., & Ding, B. (2020, September). Computer aided fracture diagnosis based on integrated learning. In 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE) (pp. 523-527). IEEE. [21]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. [22]Pearson, K. (1901). Principal components analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(2), 559. [23]Ananda, A., Ngan, K. H., Karabağ, C., Ter-Sarkisov, A., Alonso, E., & Reyes-Aldasoro, C. C. (2021). Classification and visualisation of normal and abnormal radiographs; a comparison between eleven convolutional neural network architectures. Sensors, 21(16), 5381. [24]Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). [25]Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. [26]Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360. [27]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [28]Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826). [29]Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). [30]Pizer, S. M. (1990, May). Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group. In Proceedings of the first conference on visualization in biomedical computing, Atlanta, Georgia (Vol. 337, p. 1). [31]Oh, J., Hwang, S., & Lee, J. (2023). Enhancing X-ray-Based Wrist Fracture Diagnosis Using HyperColumn-Convolutional Block Attention Module. Diagnostics, 13(18), 2927. [32]Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., & Dollár, P. (2020). Designing network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10428-10436). [33]Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8697-8710). [34]Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR. [35]Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). [36]Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. [37]Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 10012-10022). [38]Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19). [39]Hržić, F., Štajduhar, I., Tschauner, S., Sorantin, E., & Lerga, J. (2019). Local-entropy based approach for X-ray image segmentation and fracture detection. Entropy, 21(4), 338. [40][圖像處理] 二值化閾值自動化篩選 - Otsu, 多重門檻值, 直方圖 Available:https://medium.com/@mingjiehsu/%E4%BA%8C%E5%80%BC%E5%8C%96%E9%96%A5%E5%80%BC%E8%87%AA%E5%8B%95%E5%8C%96%E7%AF%A9%E9%81%B8-otsu-%E5%A4%9A%E9%87%8D%E9%96%80%E6%AA%BB%E5%80%BC-%E7%9B%B4%E6%96%B9%E5%9C%96-345aff032e0f(2024, 06, 28) [41]形態學操作(膨脹,腐蝕,開操作,閉操作) Available:https://www.twblogs.net/a/5b846e6d2b71775d1cd0b728(2024, 06, 28) [42]Ostu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans SMC, 9, 62. [43][OpenCV] 淺談直方圖均衡化Histogram Equalization、AHE均衡、CLAHE均衡(2024, 06, 28) Available:https://medium.com/@cindylin_1410/%E6%B7%BA%E8%AB%87-opencv-%E7%9B%B4%E6%96%B9%E5%9C%96%E5%9D%87%E8%A1%A1%E5%8C%96-ahe%E5%9D%87%E8%A1%A1-clahe%E5%9D%87%E8%A1%A1-ebc9c14a8f96 [44]何謂資料增強 Available:https://aws.amazon.com/tw/what-is/data-augmentation/(2024, 06, 28) [45]Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259. [46]卷積神經網絡 CNN 經典模型 — GoogleLeNet、ResNet、DenseNet with Pytorch code Available:https://medium.com/ching-i/%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E7%B5%A1-cnn-%E7%B6%93%E5%85%B8%E6%A8%A1%E5%9E%8B-googlelenet-resnet-densenet-with-pytorch-code-1688015808d9(2024, 06, 28) [47]Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer. [48]James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer. [49]Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626). [50]Chawla, N., & Bedwa, M. (2022, October). Optimized Ensemble Learning Technique on Wrist Radiographs using Deep Learning. In 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 152-159). IEEE.
|